IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i11p3430-3443.html
   My bibliography  Save this article

On robust tail index estimation

Author

Listed:
  • Beran, Jan
  • Schell, Dieter

Abstract

A new approach to tail index estimation based on huberization of the Pareto MLE is considered. The proposed estimator is robust in a nonstandard way in that it protects against deviations from the central model at low quantiles. Asymptotic normality with the parametric n-rate of convergence is obtained with a bounded asymptotic bias under deviations from the Pareto model. The method is particularly useful for small samples where Hill-type estimators tend to be highly volatile. This is illustrated by a simulation study with sample sizes n≤100.

Suggested Citation

  • Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3430-3443
    DOI: 10.1016/j.csda.2010.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947310002392
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, L., 1998. "Asymptotically unbiased estimators for the extreme-value index," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 107-115, June.
    2. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    3. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Niklas Wagner & Terry A. Marsh, 2004. "Measuring Tail Thickness under GARCH and an Application to Extreme Exchange Rate Changes," Econometrics 0401008, EconWPA.
    5. Vandewalle, B. & Beirlant, J. & Christmann, A. & Hubert, M., 2007. "A robust estimator for the tail index of Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6252-6268, August.
    6. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Estimation Of The Maximal Moment Exponent Of A Garch(1,1) Sequence," Econometric Theory, Cambridge University Press, vol. 19(04), pages 565-586, August.
    7. Niklas Wagner & Terry Marsh, 2004. "Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models," Statistical Papers, Springer, vol. 45(4), pages 545-561, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    2. Michal Brzezinski, 2016. "Robust estimation of the Pareto tail index: a Monte Carlo analysis," Empirical Economics, Springer, vol. 51(1), pages 1-30, August.
    3. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
    4. Michał Brzeziński, 2013. "Robust estimation of the Pareto index: A Monte Carlo Analysis," Working Papers 2013-32, Faculty of Economic Sciences, University of Warsaw.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3430-3443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.