IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2015_09.html

GARCH Models, Tail Indexes and Error Distributions: An Empirical Investigation

Author

Listed:
  • Roman Horváth

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Smetanovo nábreží 6, 111 01 Prague 1, Czech Republic
    Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4, 182 00, Prague, Czech Republic)

  • Boril Sopov

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Smetanovo nábreží 6, 111 01 Prague 1, Czech Republic)

Abstract

We perform a large simulation study to examine the extent to which various generalized autoregressive conditional heteroskedasticity (GARCH) models capture extreme events in stock market returns. We estimate Hill's tail indexes for individual S&P 500 stock market returns ranging from 1995{2014. and compare these to the tail indexes produced by simulating GARCH models. Our results suggest that actual and simulated values differ greatly for GARCH models with normal conditional distributions, which underestimate the tail risk. By contrast, the GARCH models with Student's t conditional distributions capture the tail shape more accurately, with GARCH and GJR-GARCH being the top performers.

Suggested Citation

  • Roman Horváth & Boril Sopov, 2015. "GARCH Models, Tail Indexes and Error Distributions: An Empirical Investigation," Working Papers IES 2015/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised May 2015.
  • Handle: RePEc:fau:wpaper:wp2015_09
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/sci/publication/show/id/5279/lang/cs
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Georgios Bampinas & Konstantinos Ladopoulos & Theodore Panagiotidis, 2018. "A note on the estimated GARCH coefficients from the S&P1500 universe," Applied Economics, Taylor & Francis Journals, vol. 50(34-35), pages 3647-3653, July.
    3. Damek, Ewa & Matsui, Muneya, 2022. "Tails of bivariate stochastic recurrence equation with triangular matrices," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 147-191.
    4. Guo, Xu & McAleer, Michael & Wong, Wing-Keung & Zhu, Lixing, 2017. "A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 346-358.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2015_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.