IDEAS home Printed from
   My bibliography  Save this article

Detecting influential data points for the Hill estimator in Pareto-type distributions


  • Hubert, Mia
  • Dierckx, Goedele
  • Vanpaemel, Dina


Pareto-type distributions are extreme value distributions for which the extreme value index γ>0. Classical estimators for γ>0, like the Hill estimator, tend to overestimate this parameter in the presence of outliers. The empirical influence function plot, which displays the influence that each data point has on the Hill estimator, is introduced. To avoid a masking effect, the empirical influence function is based on a new robust GLM estimator for γ. This robust GLM estimator is used to determine high quantiles of the data generating distribution, allowing to flag data points as unusually large if they exceed this high quantile.

Suggested Citation

  • Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
  • Handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:13-28
    DOI: 10.1016/j.csda.2012.07.011

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    2. Rosario Dell’Aquila & Paul Embrechts, 2006. "Extremes and Robustness: A Contradiction?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(1), pages 103-118, April.
    3. Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
    4. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    5. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    6. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    7. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M., 2011. "Estimation of extreme risk regions under multivariate regular variation," Other publications TiSEM b7a72a8d-f9bc-4129-ae9b-a, Tilburg University, School of Economics and Management.
    8. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    9. Vandewalle, B. & Beirlant, J. & Christmann, A. & Hubert, M., 2007. "A robust estimator for the tail index of Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6252-6268, August.
    10. McElroy, Tucker & Jach, Agnieszka, 2012. "Tail index estimation in the presence of long-memory dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 266-282.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    2. Michal Brzezinski, 2016. "Robust estimation of the Pareto tail index: a Monte Carlo analysis," Empirical Economics, Springer, vol. 51(1), pages 1-30, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:13-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.