IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Selecting the optimal sample fraction in univariate extreme value estimation

  • Drees, Holger
  • Kaufmann, Edgar
Registered author(s):

    In general, estimators of the extreme value index of i.i.d. random variables crucially depend on the sample fraction that is used for estimation. In case of the well-known Hill estimator the optimal number knopt of largest order statistics was given by Hall and Welsh (1985) as a function of some parameters of the unknown distribution function F, which was assumed to admit a certain expansion. Moreover, an estimator of knopt was proposed that is consistent if a second-order parameter [rho] of F belongs to a bounded interval. In contrast, we introduce a sequential procedure that yields a consistent estimator of knopt in the full model without requiring prior information about [rho]. Then it is demonstrated that even in a more general setup the resulting adaptive Hill estimator is asymptotically as efficient as the Hill estimator based on the optimal number of order statistics. Finally, it is shown by Monte Carlo simulations that also for moderate sample sizes the procedure shows a reasonable performance, which can be improved further if [rho] is restricted to bounded intervals.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 75 (1998)
    Issue (Month): 2 (July)
    Pages: 149-172

    in new window

    Handle: RePEc:eee:spapps:v:75:y:1998:i:2:p:149-172
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Dekkers, A. L. M. & Dehaan, L., 1993. "Optimal Choice of Sample Fraction in Extreme-Value Estimation," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 173-195, November.
    2. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:75:y:1998:i:2:p:149-172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.