IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19970016.html
   My bibliography  Save this paper

Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation

Author

Listed:
  • J. Danielsson

    (University of Iceland)

  • L. de Haan

    (Erasmus University Rotterdam)

  • L. Peng

    (Erasmus University Rotterdam)

  • C.G. de Vries

    () (Erasmus University Rotterdam)

Abstract

We use a subsample bootstrap method to get a consistent estimate of the asymptotically optimal choice of the samplefraction, in the sense of minimal mean squared error, which is needed for tail index estimation. Unlike previous methodsour procedure is fully self contained. In particular, the method is not conditional on an initial consistent estimate of the tailindex; and the ratio of the first and second order tail indices is left unrestricted, but we require the ratio to be strictlypositive. Hence the current method yields a complete solution to tail index estimation as it is not predicated on a more orless arbitrary choice of the number of highest order statistics.

Suggested Citation

  • J. Danielsson & L. de Haan & L. Peng & C.G. de Vries, 1997. "Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation," Tinbergen Institute Discussion Papers 97-016/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19970016
    as

    Download full text from publisher

    File URL: http://papers.tinbergen.nl/97016.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dekkers, A. L. M. & Dehaan, L., 1993. "Optimal Choice of Sample Fraction in Extreme-Value Estimation," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 173-195, November.
    2. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    3. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    4. de Haan, L. & Pereira, T. Themido, 1999. "Estimating the index of a stable distribution," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 39-55, January.
    5. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    6. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Tail index; Bootstrap; Bias; Mean squared error;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19970016. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.