IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i1p85-98.html
   My bibliography  Save this article

The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool

Author

Listed:
  • Verdonck, T.
  • Debruyne, M.

Abstract

The chain-ladder method is a widely used technique to forecast the reserves that have to be kept regarding claims that are known to exist, but for which the actual size is unknown at the time the reserves have to be set. In practice it can be easily seen that even one outlier can lead to a huge over- or underestimation of the overall reserve when using the chain-ladder method. This indicates that individual claims can be very influential when determining the chain-ladder estimates. In this paper the effect of contamination is mathematically analyzed by calculating influence functions in the generalized linear model framework corresponding to the chain-ladder method. It is proven that the influence functions are unbounded, confirming the sensitivity of the chain-ladder method to outliers. A robust alternative is introduced to estimate the generalized linear model parameters in a more outlier resistant way. Finally, based on the influence functions and the robust estimators, a diagnostic tool is presented highlighting the influence of every individual claim on the classical chain-ladder estimates. With this tool it is possible to detect immediately which claims have an abnormally positive or negative influence on the reserve estimates. Further examination of these influential points is then advisable. A study of artificial and real run-off triangles shows the good performance of the robust chain-ladder method and the diagnostic tool.

Suggested Citation

  • Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:85-98
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00107-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. England, P. D. & Verrall, R. J., 2006. "Predictive Distributions of Outstanding Liabilities in General Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 221-270, September.
    3. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    4. Tim Verdonck & Martine Van Wouwe & Jan Dhaene, 2009. "A Robustification of the Chain-Ladder Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 280-298.
    5. John S. Preisser & Bahjat F. Qaqish, 1999. "Robust Regression for Clustered Data with Application to Binary Responses," Biometrics, The International Biometric Society, vol. 55(2), pages 574-579, June.
    6. Verrall, R. J., 1991. "On the estimation of reserves from loglinear models," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 75-80, March.
    7. Verbeek, H. G., 1972. "An approach to the analysis of claims experience in motor liability excess of loss reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 6(3), pages 195-202, May.
    8. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    9. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    10. Renshaw, A.E. & Verrall, R.J., 1998. "A Stochastic Model Underlying the Chain-Ladder Technique," British Actuarial Journal, Cambridge University Press, vol. 4(4), pages 903-923, October.
    11. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    12. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
    13. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    14. Verrall, R. J., 2000. "An investigation into stochastic claims reserving models and the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 91-99, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    2. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.
    3. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    4. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    5. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "Detection and treatment of outliers for multivariate robust loss reserving," Papers 2203.03874, arXiv.org, revised Jun 2023.
    6. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    7. Jan Barlak & Matus Bakon & Martin Rovnak & Martina Mokrisova, 2022. "Heat Equation as a Tool for Outliers Mitigation in Run-Off Triangles for Valuing the Technical Provisions in Non-Life Insurance Business," Risks, MDPI, vol. 10(9), pages 1-17, August.
    8. Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
    9. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "On the impact of outliers in loss reserving," Papers 2203.00184, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    2. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    3. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    4. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    5. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    6. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    7. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.
    8. Klaus Schmidt, 2012. "Loss prediction based on run-off triangles," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 265-310, June.
    9. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    10. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    11. Kunkler, Michael, 2006. "Modelling negatives in stochastic reserving models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 540-555, June.
    12. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    13. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    14. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2022. "Mack-Net model: Blending Mack's model with Recurrent Neural Networks," Papers 2205.07334, arXiv.org.
    15. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
    16. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    17. Han, Zhongxian & Gau, Wu-Chyuan, 2008. "Estimation of loss reserves with lognormal development factors," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 389-395, February.
    18. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    19. Hudecová, Šárka & Pešta, Michal, 2013. "Modeling dependencies in claims reserving with GEE," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 786-794.
    20. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:85-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.