IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i1p2-d86840.html
   My bibliography  Save this article

On Comparison of Stochastic Reserving Methods with Bootstrapping

Author

Listed:
  • Liivika Tee

    (Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia)

  • Meelis Käärik

    (Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia)

  • Rauno Viin

    (Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia)

Abstract

We consider the well-known stochastic reserve estimation methods on the basis of generalized linear models, such as the (over-dispersed) Poisson model, the gamma model and the log-normal model. For the likely variability of the claims reserve, bootstrap method is considered. In the bootstrapping framework, we discuss the choice of residuals, namely the Pearson residuals, the deviance residuals and the Anscombe residuals. In addition, several possible residual adjustments are discussed and compared in a case study. We carry out a practical implementation and comparison of methods using real-life insurance data to estimate reserves and their prediction errors. We propose to consider proper scoring rules for model validation, and the assessments will be drawn from an extensive case study.

Suggested Citation

  • Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:2-:d:86840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Forecasting with the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 987-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    2. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    2. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    3. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    4. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    5. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    6. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    7. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    8. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    9. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    10. Valandis Elpidorou & Carolin Margraf & María Dolores Martínez-Miranda & Bent Nielsen, 2019. "A Likelihood Approach to Bornhuetter–Ferguson Analysis," Risks, MDPI, vol. 7(4), pages 1-20, December.
    11. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    12. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    13. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    14. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    15. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
    16. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    17. Lindholm, Mathias & Verrall, Richard, 2020. "Regression based reserving models and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 109-124.
    18. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    19. Kunkler, Michael, 2006. "Modelling negatives in stochastic reserving models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 540-555, June.
    20. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:2-:d:86840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.