IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i2p30-d99880.html
   My bibliography  Save this article

State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

Author

Listed:
  • Nataliya Chukhrova

    (Faculty of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

  • Arne Johannssen

    (Faculty of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

Abstract

This paper gives a detailed overview of the current state of research in relation to the use of state space models and the K alman -filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL) method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the K alman -filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

Suggested Citation

  • Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:2:p:30-:d:99880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/2/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/2/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piet de Jong, 2006. "Forecasting Runoff Triangles," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 28-38.
    2. Verdonck, T. & Van Wouwe, M., 2011. "Detection and correction of outliers in the bivariate chain-ladder method," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 188-193, September.
    3. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    4. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    5. Ioannis Ntzoufras & Petros Dellaportas, 2002. "Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(1), pages 113-125.
    6. Verrall, R.J., 1994. "A Method for Modelling Varying Run-Off Evolutions in Claims Reserving," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 325-332, November.
    7. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    8. Atherino, Rodrigo & Pizzinga, Adrian & Fernandes, Cristiano, 2010. "A Row-Wise Stacking of the Runoff Triangle: State Space Alternatives for IBNR Reserve Prediction," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 917-946, November.
    9. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    10. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    11. Martine Van Wouwe & Tim Verdonck & Kristel Van Rompay, 2009. "Application of classical and robust chain-ladder methods: results for the Belgian non-life business," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 11(2), pages 99-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.
    3. Kevin Kuo, 2019. "DeepTriangle: A Deep Learning Approach to Loss Reserving," Risks, MDPI, vol. 7(3), pages 1-12, September.
    4. Leonardo Costa & Adrian Pizzinga, 2020. "State‐space models for predicting IBNR reserve in row‐wise ordered runoff triangles: Calendar year IBNR reserves & tail effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 438-448, April.
    5. Gholamreza Hesamian & Arne Johannssen & Nataliya Chukhrova, 2023. "A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    6. Nguyen, Trang & Chaiechi, Taha & Eagle, Lynne & Low, David, 2020. "Dynamic transmissions between main stock markets and SME stock markets: Evidence from tropical economies," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 308-324.
    7. Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.
    8. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    9. Valandis Elpidorou & Carolin Margraf & María Dolores Martínez-Miranda & Bent Nielsen, 2019. "A Likelihood Approach to Bornhuetter–Ferguson Analysis," Risks, MDPI, vol. 7(4), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.
    2. Leonardo Costa & Adrian Pizzinga, 2020. "State‐space models for predicting IBNR reserve in row‐wise ordered runoff triangles: Calendar year IBNR reserves & tail effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 438-448, April.
    3. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    4. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    5. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    6. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    7. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    8. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    9. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    10. Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
    11. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    12. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    13. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.
    14. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    15. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    16. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    17. Helena Jasiulewicz, 2013. "Przestrzeń stanów i filtr Kalmana w teorii ubezpieczeń," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 101-116.
    18. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    19. Han, Zhongxian & Gau, Wu-Chyuan, 2008. "Estimation of loss reserves with lognormal development factors," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 389-395, February.
    20. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:2:p:30-:d:99880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.