IDEAS home Printed from
   My bibliography  Save this article

Estimation and Asymptotic Inference in the AR-ARCH Model


  • Theis Lange
  • Anders Rahbek
  • Søren Tolver Jensen


This article studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. A modified QMLE (MQMLE) is also studied. This estimator is based on truncation of individual terms of the likelihood function and is related to the recent so-called self-weighted QMLE in Ling (2007b). We show that the MQMLE is asymptotically normal irrespectively of the existence of finite moments, as geometric ergodicity alone suffice. Moreover, our included simulations show that the MQMLE is remarkably well-behaved in small samples. On the other hand, the ordinary QMLE, as is well-known, requires finite fourth order moments for asymptotic normality. But based on our considerations and simulations, we conjecture that in fact only geometric ergodicity and finite second order moments are needed for the QMLE to be asymptotically normal. Finally, geometric ergodicity for AR-ARCH processes is shown to hold under mild and classic conditions on the AR and ARCH processes.

Suggested Citation

  • Theis Lange & Anders Rahbek & Søren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
  • Handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:129-153 DOI: 10.1080/07474938.2011.534031

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(03), pages 691-721, June.
    2. Kien Tran, 1998. "Estimating mixtures of normal distributions via empirical characteristic function," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 167-183.
    3. French, Kenneth R., 1980. "Stock returns and the weekend effect," Journal of Financial Economics, Elsevier, vol. 8(1), pages 55-69, March.
    4. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    2. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1236-1278, December.
    3. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    5. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    6. Anders Rahbek & Heino Bohn Nielsen, 2012. "Unit Root Vector Autoregression with volatility Induced Stationarity," CREATES Research Papers 2012-29, Department of Economics and Business Economics, Aarhus University.
    7. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:30:y:2011:i:2:p:129-153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.