IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models

  • Meitz, Mika
  • Saikkonen, Pentti

This paper studies a class of Markov models that consist of two components. Typically, one of the components is observable and the other is unobservable or “hidden.” Conditions under which geometric ergodicity of the unobservable component is inherited by the joint process formed of the two components are given. This implies existence of initial values such that the joint process is strictly stationary and β-mixing. In addition to this, conditions for the existence of moments are also obtained, and extensions to the case of nonstationary initial values are provided. All these results are applied to a general model that includes as special cases various first-order generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional duration (ACD) models with possibly complicated nonlinear structures. The results only require mild moment assumptions and in some cases provide necessary and sufficient conditions for geometric ergodicity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466608080511
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 24 (2008)
Issue (Month): 05 (October)
Pages: 1291-1320

as
in new window

Handle: RePEc:cup:etheor:v:24:y:2008:i:05:p:1291-1320_08
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECT
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  2. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
  3. Lundbergh, Stefan & Teräsvirta, Timo, 1998. "Evaluating GARCH models," SSE/EFI Working Paper Series in Economics and Finance 292, Stockholm School of Economics, revised 03 May 1999.
  4. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  5. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  6. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
  7. Fernandes, Marcelo & Grammig, Joachim, 2002. "A Family of Autoregressive Conditional Duration Models," Economics Working Papers (Ensaios Economicos da EPGE) 440, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  8. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
  9. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  10. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  11. Meitz, Mika, 2006. "A Necessary And Sufficient Condition For The Strict Stationarity Of A Family Of Garch Processes," Econometric Theory, Cambridge University Press, vol. 22(05), pages 985-988, October.
  12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  13. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  14. Francq, Christian & Zako an, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(05), pages 815-834, October.
  15. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  16. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
  17. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  18. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
  19. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  20. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  21. Shiqing Ling & Michael McAleer, 2001. "Stationarity and the Existence of Moments of a Family of GARCH Processes," ISER Discussion Paper 0535, Institute of Social and Economic Research, Osaka University.
  22. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:24:y:2008:i:05:p:1291-1320_08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.