IDEAS home Printed from https://ideas.repec.org/e/pme81.html
   My authors  Follow this author

Mika Meitz

Personal Details

First Name:Mika
Middle Name:
Last Name:Meitz
Suffix:
RePEc Short-ID:pme81
http://blogs.helsinki.fi/meitz/
Department of Political and Economic Studies, Economics, P. O. Box 17 (Arkadiankatu 7), FIN-00014 University of Helsinki, Finland

Affiliation

(50%) Politiikan ja Talouden Tutkimuksen Laitos
Valtiotieteellinen tiedekunta
Helsingin Yliopisto

Helsinki, Finland
http://www.helsinki.fi/politiikkajatalous/

: +358 9 191 8897
+358 9 191 8877
P.O. Box 54 (Unioninkatu 37), FIN-00014 University of Helsinki
RePEc:edi:valhefi (more details at EDIRC)

(50%) Helsinki Center for Economic Research (HECER)

Helsinki, Finland
http://www.hecer.fi/

:
+358-9-191 28781
HECER, P.O. Box 17 (Arkadiankatu 7), FI-00014 UNIVERSITY OF HELSINKI
RePEc:edi:hecerfi (more details at EDIRC)

Research output

as
Jump to: Working papers Articles Books

Working papers

  1. Mika Meitz & Pentti Saikkonen, 2017. "Testing for observation-dependent regime switching in mixture autoregressive models," Papers 1711.03959, arXiv.org.
  2. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2015. "Identification and estimation of non-Gaussian structural vector autoregressions," CREATES Research Papers 2015-16, Department of Economics and Business Economics, Aarhus University.
  3. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2012. "Testing for predictability in a noninvertible ARMA model," MPRA Paper 37151, University Library of Munich, Germany.
  4. Mika Meitz & Pentti Saikkonen, 2012. "Maximum Likelihood Estimation of a Noninvertible ARMA Model with Autoregressive Conditional Heteroskedasticity," Koç University-TUSIAD Economic Research Forum Working Papers 1226, Koc University-TUSIAD Economic Research Forum.
  5. Mika Meitz & Pentti Saikkonen, 2010. "A note on the geometric ergodicity of a nonlinear AR–ARCH model," Koç University-TUSIAD Economic Research Forum Working Papers 1003, Koc University-TUSIAD Economic Research Forum.
  6. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
  7. Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," SSE/EFI Working Paper Series in Economics and Finance 632, Stockholm School of Economics.
  8. Meitz, Mika, 2005. "A necessary and sufficient condition for the strict stationarity of a family of GARCH processes," SSE/EFI Working Paper Series in Economics and Finance 601, Stockholm School of Economics.
  9. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  10. Meitz, Mika & Saikkonen, Pentti, 2004. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," SSE/EFI Working Paper Series in Economics and Finance 573, Stockholm School of Economics, revised 20 Apr 2007.

Articles

  1. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
  2. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
  3. Leena Kalliovirta & Mika Meitz & Pentti Saikkonen, 2015. "A Gaussian Mixture Autoregressive Model for Univariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 247-266, March.
  4. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2013. "Testing for Linear and Nonlinear Predictability of Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(4), pages 682-705, September.
  5. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
  6. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1236-1278, December.
  7. Meitz, Mika & Saikkonen, Pentti, 2010. "A note on the geometric ergodicity of a nonlinear AR-ARCH model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 631-638, April.
  8. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR-GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
  9. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1291-1320, October.
  10. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
  11. Meitz, Mika, 2006. "A Necessary And Sufficient Condition For The Strict Stationarity Of A Family Of Garch Processes," Econometric Theory, Cambridge University Press, vol. 22(05), pages 985-988, October.

Books

  1. Haldrup, Niels & Meitz, Mika & Saikkonen, Pentti (ed.), 2014. "Essays in Nonlinear Time Series Econometrics," OUP Catalogue, Oxford University Press, number 9780199679959.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2015. "Identification and estimation of non-Gaussian structural vector autoregressions," CREATES Research Papers 2015-16, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
    2. Drautzburg, Thorsten, 2016. "A narrative approach to a fiscal DSGE model," Working Papers 16-11, Federal Reserve Bank of Philadelphia.
    3. Gabriele Fiorentini & Enrique Sentana, 2018. "Consistent non-Gaussian pseudo maximum likelihood estimators," Working Paper series 18-06, Rimini Centre for Economic Analysis.
    4. Kholodilin, Konstantin A. & Netsunajev, Aleksei, 2017. "Crimea and punishment: the impact of sanctions on Russian and European economies," Bank of Estonia Working Papers wp2017-5, Bank of Estonia, revised 11 Sep 2017.
    5. Uhrin, Gábor B. & Herwartz, Helmut, 2016. "Monetary policy shocks, set-identifying restrictions, and asset prices: A benchmarking approach for analyzing set-identified models," Center for European, Governance and Economic Development Research Discussion Papers 295, University of Goettingen, Department of Economics.
    6. Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.
    7. Christian Gouriéroux & Alain Monfort & Jean-Paul Renne, 2017. "Statistical Inference for Independent Component Analysis: Application to Structural VAR Models," Working Papers 2017-09, Center for Research in Economics and Statistics.
    8. Nunes, Clemens Vinicius & Doi, Jonas & Fernandes, Marcelo, 2017. "Disagreement in Inflation Forecasts and Inflation Risk Premia in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    9. Guido Turnip, 2017. "Identification of Small Open Economy SVARs via Markov-Switching Heteroskedasticity," The Economic Record, The Economic Society of Australia, vol. 93(302), pages 465-483, September.
    10. Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
    11. Markku Lanne & Jani Luoto, 2016. "Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression," CREATES Research Papers 2016-04, Department of Economics and Business Economics, Aarhus University.
    12. Marco Capasso & Alessio Moneta, 2016. "Macroeconomic responses to an independent monetary policy shock: a (more) agnostic identification procedure," LEM Papers Series 2016/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

  2. Mika Meitz & Pentti Saikkonen, 2012. "Maximum Likelihood Estimation of a Noninvertible ARMA Model with Autoregressive Conditional Heteroskedasticity," Koç University-TUSIAD Economic Research Forum Working Papers 1226, Koc University-TUSIAD Economic Research Forum.

    Cited by:

    1. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2012. "Testing for predictability in a noninvertible ARMA model," MPRA Paper 37151, University Library of Munich, Germany.
    2. Nikolay Gospodinov & Serena Ng, 2015. "Minimum Distance Estimation of Possibly Noninvertible Moving Average Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 403-417, July.
    3. Lof, Matthijs, 2011. "Noncausality and Asset Pricing," MPRA Paper 30519, University Library of Munich, Germany.
    4. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2015. "Identification and estimation of non-Gaussian structural vector autoregressions," CREATES Research Papers 2015-16, Department of Economics and Business Economics, Aarhus University.
    5. Saikkonen, Pentti & Sandberg, Rickard, 2013. "Testing for a unit root in noncausal autoregressive models," Research Discussion Papers 26/2013, Bank of Finland.
    6. Nyholm, Juho, 2017. "Residual-based diagnostic tests for noninvertible ARMA models," MPRA Paper 81033, University Library of Munich, Germany.

  3. Mika Meitz & Pentti Saikkonen, 2010. "A note on the geometric ergodicity of a nonlinear AR–ARCH model," Koç University-TUSIAD Economic Research Forum Working Papers 1003, Koc University-TUSIAD Economic Research Forum.

    Cited by:

    1. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
    2. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.

  4. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.

    Cited by:

    1. Cristina Amado & Timo Teräsvirta, 2011. "Modelling Volatility by Variance Decomposition," NIPE Working Papers 01/2011, NIPE - Universidade do Minho.
    2. Li, Dong & Ling, Shiqing & Zakoïan, Jean-Michel, 2015. "Asymptotic inference in multiple-threshold double autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 415-427.
    3. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    4. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effects in the Returns of US Equities," Documents de travail du Centre d'Economie de la Sorbonne 14022r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
    5. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    8. Fengler, Matthias & Melnikov, Alexander, 2017. "GARCH option pricing models with Meixner innovations," Economics Working Paper Series 1702, University of St. Gallen, School of Economics and Political Science.
    9. Annastiina Silvennoinen & Timo Teräsvirta, 2012. "Modelling conditional correlations of asset returns: A smooth transition approach," CREATES Research Papers 2012-09, Department of Economics and Business Economics, Aarhus University.
    10. Dong Li & Shiqing Ling & Jean-Michel Zakoian, 2013. "Asymptotic Inference in Multiple-Threshold Nonlinear Time Series Models," Working Papers 2013-51, Center for Research in Economics and Statistics.
    11. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    12. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    13. KIlIç, Rehim, 2011. "Long memory and nonlinearity in conditional variances: A smooth transition FIGARCH model," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 368-378, March.
    14. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

  5. Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," SSE/EFI Working Paper Series in Economics and Finance 632, Stockholm School of Economics.

    Cited by:

    1. Mika Meitz & Pentti Saikkonen, 2007. "Stability of nonlinear AR-GARCH models," Economics Series Working Papers 328, University of Oxford, Department of Economics.
    2. Jiti Gao & Maxwell King, 2011. "A New Test in Parametric Linear Models against Nonparametric Autoregressive Errors," Monash Econometrics and Business Statistics Working Papers 20/11, Monash University, Department of Econometrics and Business Statistics.
    3. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
    4. Linton, Oliver & Iglesias, Emma M., 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    6. Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
    7. Murat Midilic, 2016. "Estimation Of Star-Garch Models With Iteratively Weighted Least Squares," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/918, Ghent University, Faculty of Economics and Business Administration.
    8. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    9. Jungsik Noh & Sangyeol Lee, 2016. "Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 700-720, September.
    10. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
    11. Pedersen, Rasmus Søndergaard, 2017. "Robust inference in conditionally heteroskedastic autoregressions," MPRA Paper 81979, University Library of Munich, Germany.
    12. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    13. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
    14. Mika Meitz & Pentti Saikkonen, 2010. "A note on the geometric ergodicity of a nonlinear AR–ARCH model," Koç University-TUSIAD Economic Research Forum Working Papers 1003, Koc University-TUSIAD Economic Research Forum.

  6. Meitz, Mika, 2005. "A necessary and sufficient condition for the strict stationarity of a family of GARCH processes," SSE/EFI Working Paper Series in Economics and Finance 601, Stockholm School of Economics.

    Cited by:

    1. Mika Meitz & Pentti Saikkonen, 2007. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," Economics Series Working Papers 327, University of Oxford, Department of Economics.
    2. Fernandes, Marcelo & Medeiros, Marcelo C. & Veiga, Alvaro, 2013. "A (semi-)parametric functional coefficient autoregressive conditional duration model," Textos para discussão 343, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    3. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.

  7. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.

    Cited by:

    1. Nikolaus Hautsch & Vahidin Jeleskovic, 2008. "Modelling High-Frequency Volatility and Liquidity Using Multiplicative Error Models," SFB 649 Discussion Papers SFB649DP2008-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    3. Wolfgang Karl Härdle & Nikolaus Hautsch & Andrija Mihoci, 2012. "Local Adaptive Multiplicative Error Models for High-Frequency Forecasts," SFB 649 Discussion Papers SFB649DP2012-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Ng, F.C. & Li, W.K. & Yu, Philip L.H., 2016. "Diagnostic checking of the vector multiplicative error model," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 86-97.
    5. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    7. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    8. Zhang Zongxin & Zhang Xiao, 2011. "Trading duration, mutual funds behavior and stock market shock: Based on ACD model to mine mutual funds investment behavior," China Finance Review International, Emerald Group Publishing, vol. 1(3), pages 220-240, July.
    9. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    10. Mika Meitz & Pentti Saikkonen, 2007. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," Economics Series Working Papers 327, University of Oxford, Department of Economics.
    11. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
    12. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
    13. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    14. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    15. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    16. Fernandes, Marcelo & Medeiros, Marcelo C. & Veiga, Alvaro, 2013. "A (semi-)parametric functional coefficient autoregressive conditional duration model," Textos para discussão 343, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    17. Helton Saulo & Jeremias Leão, 2017. "On log-symmetric duration models applied to high frequency financial data," Economics Bulletin, AccessEcon, vol. 37(2), pages 1089-1097.
    18. Florian Ielpo & Dominique Gúegan, 2009. "Understanding the Importance of the Duration and Size of the Variations of Fed’s Target Rate," The IUP Journal of Monetary Economics, IUP Publications, vol. 0(3-4), pages 44-72, August.
    19. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Sangyeol Lee & Haejune Oh, 2016. "Parameter change test for autoregressive conditional duration models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(3), pages 621-637, June.
    21. Rodrigo Herrera & Bernhard Schipp, 2011. "Extreme value models in a conditional duration intensity framework," SFB 649 Discussion Papers SFB649DP2011-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    22. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    23. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
    24. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    25. Marc Hallin & Davide La Vecchia, 2017. "A Simple R-Estimation Method for Semiparametric Duration Models," Working Papers ECARES ECARES 2017-01, ULB -- Universite Libre de Bruxelles.
    26. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," Caepr Working Papers 2007-019, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
    27. Henryk Gurgul & Robert Syrek & Christoph Mitterer, 2016. "Price duration versus trading volume in high-frequency data for selected DAX companies," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 17(2), pages 241-260.
    28. Filip Zikes & Vít Bubák, 2006. "Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(5-6), pages 223-245, May.
    29. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    30. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    31. Rodrigues, Bruno Dore & Souza, Reinaldo Castro & Stevenson, Maxwell J., 2012. "An analysis of intraday market behaviour before takeover announcements," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 23-32.
    32. Kalaitzoglou, Iordanis & Ibrahim, Boulis Maher, 2013. "Trading patterns in the European carbon market: The role of trading intensity and OTC transactions," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 402-416.
    33. Bodnar, Taras & Hautsch, Nikolaus, 2013. "Copula-based dynamic conditional correlation multiplicative error processes," CFS Working Paper Series 2013/19, Center for Financial Studies (CFS).
    34. Henryk Gurgul & Artur Machno, 2017. "Trade Pattern On Warsaw Stock Exchange And Prediction Of Number Of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    35. Ielpo, Florian & Guégan, Dominique, 2006. "An econometric specification of monetary policy dark art," MPRA Paper 1004, University Library of Munich, Germany, revised 07 Oct 2006.
    36. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    37. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.
    38. Ping-Hung Chou & Pei-Shan Wu & Teng-Tsai Tu, 2014. "The Impact of Trader Behavior on Options Price Volatility," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(4), pages 503-516, April.
    39. Richard Gerlach & Shelton Peiris & Edward M. H. Lin, 2016. "Bayesian estimation and inference for log-ACD models," Computational Statistics, Springer, vol. 31(1), pages 25-48, March.
    40. Chiang, Min-Hsien & Wang, Li-Min, 2011. "Volatility contagion: A range-based volatility approach," Journal of Econometrics, Elsevier, vol. 165(2), pages 175-189.

  8. Meitz, Mika & Saikkonen, Pentti, 2004. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," SSE/EFI Working Paper Series in Economics and Finance 573, Stockholm School of Economics, revised 20 Apr 2007.

    Cited by:

    1. Konstantinos Fokianos & Anders Rahbek & Dag Tjøstheim, 2008. "Poisson Autoregression," Discussion Papers 08-35, University of Copenhagen. Department of Economics, revised Dec 2008.
    2. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH model," SSE/EFI Working Paper Series in Economics and Finance 0652, Stockholm School of Economics.
    3. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V. K., 2006. "Nonparametric density estimation for positive time series," CORE Discussion Papers 2006085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Mika Meitz & Pentti Saikkonen, 2007. "Stability of nonlinear AR-GARCH models," Economics Series Working Papers 328, University of Oxford, Department of Economics.
    6. Atchadé, Yves F. & Cattaneo, Matias D., 2014. "A martingale decomposition for quadratic forms of Markov chains (with applications)," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 646-677.
    7. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    8. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    9. Christina Amado & Timo Teräsvirta, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," CREATES Research Papers 2008-08, Department of Economics and Business Economics, Aarhus University.
    10. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
    11. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," Cahiers de recherche 0927, CIRPEE.
    12. Taoufik Bouezmarni & Abderrahim Taamouti, 2014. "Nonparametric tests for conditional independence using conditional distributions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 697-719, December.
    13. Rasmus Søndergaard Pedersen, 2015. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Discussion Papers 15-10, University of Copenhagen. Department of Economics.
    14. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    15. Fernandes, Marcelo & Medeiros, Marcelo C. & Veiga, Alvaro, 2013. "A (semi-)parametric functional coefficient autoregressive conditional duration model," Textos para discussão 343, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    16. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    17. Konstantinos Fokianos & Dag Tjøstheim, 2012. "Nonlinear Poisson autoregression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1205-1225, December.
    18. Arianna Agosto & Giuseppe Cavaliere & Dennis Kristensen & Anders Rahbek, 2015. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," CREATES Research Papers 2015-11, Department of Economics and Business Economics, Aarhus University.
    19. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
    20. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    21. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Economics Working Papers ECO2006/3, European University Institute.
    22. HAFNER, Christian & PREMINGER, Arie, 2006. "Asymptotic theory for a factor GARCH model," CORE Discussion Papers 2006071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    24. Ruiz-Castillo, Javier, 2012. "From the “European Paradox” to a European Drama in citation impact," UC3M Working papers. Economics we1211, Universidad Carlos III de Madrid. Departamento de Economía.
    25. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    26. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
    27. Konstantinos Fokianos, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 451-454, September.
    28. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
    29. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, Elsevier.

Articles

  1. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    See citations under working paper version above.
  2. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.

    Cited by:

    1. Ching-Wai Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "VAR Models with Non-Gaussian Shocks," Discussion Papers 1609, Centre for Macroeconomics (CFM).
    2. Leena Kalliovirta & Tuomas Malinen, 2015. "Nonlinearity and cross-country dependence of income inequality," Working Papers 358, ECINEQ, Society for the Study of Economic Inequality.
    3. Jan Pablo Burgard & Matthias Neuenkirch & Matthias Nöckel, 2018. "State-Dependent Transmission of Monetary Policy in the Euro Area," CESifo Working Paper Series 7074, CESifo Group Munich.
    4. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
    5. Mika Meitz & Daniel Preve & Pentti Saikkonen, 2018. "A mixture autoregressive model based on Student's $t$-distribution," Papers 1805.04010, arXiv.org.

  3. Leena Kalliovirta & Mika Meitz & Pentti Saikkonen, 2015. "A Gaussian Mixture Autoregressive Model for Univariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 247-266, March.

    Cited by:

    1. Leena Kalliovirta & Tuomas Malinen, 2015. "Nonlinearity and cross-country dependence of income inequality," Working Papers 358, ECINEQ, Society for the Study of Economic Inequality.
    2. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    3. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
    4. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
    5. Demian Pouzo & Zacharias Psaradakis & Martin Sola, 2016. "Maximum Likelihood Estimation in Possibly Misspecified Dynamic Models with Time-Inhomogeneous Markov Regimes," Papers 1612.04932, arXiv.org, revised May 2018.
    6. Mika Meitz & Daniel Preve & Pentti Saikkonen, 2018. "A mixture autoregressive model based on Student's $t$-distribution," Papers 1805.04010, arXiv.org.
    7. Gilbert Mbara, 2017. "Business Cycle Dating after the Great Moderation: A Consistent Two – Stage Maximum Likelihood Method," Working Papers 2017-13, Faculty of Economic Sciences, University of Warsaw.

  4. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2013. "Testing for Linear and Nonlinear Predictability of Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(4), pages 682-705, September.

    Cited by:

    1. Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2015. "Testing for Fundamental Vector Moving Average Representations," Caepr Working Papers 2015-022 Classification-C, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
    2. Nyholm, Juho, 2017. "Residual-based diagnostic tests for noninvertible ARMA models," MPRA Paper 81033, University Library of Munich, Germany.

  5. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255. See citations under working paper version above.
  6. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1236-1278, December.
    See citations under working paper version above.
  7. Meitz, Mika & Saikkonen, Pentti, 2010. "A note on the geometric ergodicity of a nonlinear AR-ARCH model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 631-638, April.
    See citations under working paper version above.
  8. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR-GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    See citations under working paper version above.
  9. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1291-1320, October. See citations under working paper version above.
  10. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    See citations under working paper version above.
  11. Meitz, Mika, 2006. "A Necessary And Sufficient Condition For The Strict Stationarity Of A Family Of Garch Processes," Econometric Theory, Cambridge University Press, vol. 22(05), pages 985-988, October. See citations under working paper version above.

Books

  1. Haldrup, Niels & Meitz, Mika & Saikkonen, Pentti (ed.), 2014. "Essays in Nonlinear Time Series Econometrics," OUP Catalogue, Oxford University Press, number 9780199679959.

    Cited by:

    1. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 15 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ETS: Econometric Time Series (16) 2004-03-14 2004-12-20 2005-09-11 2006-09-11 2007-05-19 2007-05-19 2008-06-13 2008-06-13 2008-06-27 2010-01-30 2010-01-30 2012-03-14 2012-09-30 2012-09-30 2015-04-19 2017-11-19. Author is listed
  2. NEP-ECM: Econometrics (13) 2004-03-14 2004-12-20 2005-09-11 2006-09-11 2007-05-19 2007-05-19 2008-06-13 2010-01-30 2010-01-30 2012-03-14 2012-09-30 2015-04-19 2017-11-19. Author is listed
  3. NEP-ORE: Operations Research (5) 2008-06-13 2008-06-13 2008-06-27 2010-01-30 2010-01-30. Author is listed
  4. NEP-FIN: Finance (3) 2004-03-14 2004-12-20 2004-12-22
  5. NEP-FOR: Forecasting (2) 2012-03-14 2012-09-30
  6. NEP-ICT: Information & Communication Technologies (2) 2006-09-11 2007-05-19
  7. NEP-RMG: Risk Management (1) 2004-03-14

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Mika Meitz should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.