IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v38y2022i5p959-985_6.html

Subgeometrically Ergodic Autoregressions

Author

Listed:
  • Meitz, Mika
  • Saikkonen, Pentti

Abstract

In this paper, we discuss how the notion of subgeometric ergodicity in Markov chain theory can be exploited to study stationarity and ergodicity of nonlinear time series models. Subgeometric ergodicity means that the transition probability measures converge to the stationary measure at a rate slower than geometric. Specifically, we consider suitably defined higher-order nonlinear autoregressions that behave similarly to a unit root process for large values of the observed series but we place almost no restrictions on their dynamics for moderate values of the observed series. Results on the subgeometric ergodicity of nonlinear autoregressions have previously appeared only in the first-order case. We provide an extension to the higher-order case and show that the autoregressions we consider are, under appropriate conditions, subgeometrically ergodic. As useful implications, we also obtain stationarity and $\beta $ -mixing with subgeometrically decaying mixing coefficients.

Suggested Citation

  • Meitz, Mika & Saikkonen, Pentti, 2022. "Subgeometrically Ergodic Autoregressions," Econometric Theory, Cambridge University Press, vol. 38(5), pages 959-985, October.
  • Handle: RePEc:cup:etheor:v:38:y:2022:i:5:p:959-985_6
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466620000419/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2024. "Robust Estimation in Network Vector Autoregression with Nonstationary Regressors," Papers 2401.04050, arXiv.org.
    2. Mika Meitz & Pentti Saikkonen, 2022. "Subgeometrically ergodic autoregressions with autoregressive conditional heteroskedasticity," Papers 2205.11953, arXiv.org, revised Apr 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:38:y:2022:i:5:p:959-985_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.