IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/37151.html
   My bibliography  Save this paper

Testing for predictability in a noninvertible ARMA model

Author

Listed:
  • Lanne, Markku
  • Meitz, Mika
  • Saikkonen, Pentti

Abstract

We develop likelihood-based tests for autocorrelation and predictability in a first order non- Gaussian and noninvertible ARMA model. Tests based on a special case of the general model, referred to as an all-pass model, are also obtained. Data generated by an all-pass process are uncorrelated but, in the non-Gaussian case, dependent and nonlinearly predictable. Therefore, in addition to autocorrelation the proposed tests can also be used to test for nonlinear predictability. This makes our tests different from their previous counterparts based on conventional invertible ARMA models. Unlike in the invertible case, our tests can also be derived by standard methods that lead to chi-squared or standard normal limiting distributions. A further convenience of the noninvertible ARMA model is that, to some extent, it can allow for conditional heteroskedasticity in the data which is useful when testing for predictability in economic and financial data. This is also illustrated by our empirical application to U.S. stock returns, where our tests indicate the presence of nonlinear predictability.

Suggested Citation

  • Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2012. "Testing for predictability in a noninvertible ARMA model," MPRA Paper 37151, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:37151
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/37151/1/MPRA_paper_37151.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
    2. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    3. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time-series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    4. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    5. Taylor, Stephen J., 1982. "Tests of the Random Walk Hypothesis Against a Price-Trend Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(01), pages 37-61, March.
    6. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    7. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    8. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    9. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Non-Gaussian time series; noninvertible ARMA model; all-pass process; predictability of asset returns;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:37151. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.