A Novel Test for the Presence of Local Explosive Dynamics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011.
"EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
- Peter C. B. Phillips & Yangru Wu & Jun Yu, 2007. "Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?," Working Papers 222007, Hong Kong Institute for Monetary Research.
- Peter C.B. PHILIPS & Yangru WU & Jun YU, 2009. "Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?," Working Papers 19-2009, Singapore Management University, School of Economics.
- Peter C.B.Phillips & Yangru Wu & Jun Yu, 2009. "Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?," Working Papers CoFie-03-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Peter C.B. Philips & Yangru Wu & Jun Yu, 2009. "Explosive Behavior in the 1990s Nasdaq : When Did Exuberance Escalate Asset Values?," Finance Working Papers 23050, East Asian Bureau of Economic Research.
- Peter C.B. Phillips & Yangru Wu & Jun Yu, 2009. "Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?," Cowles Foundation Discussion Papers 1699, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Jun Yu, 2011.
"Dating the timeline of financial bubbles during the subprime crisis,"
Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
- Peter C.B.Phillips & Jun Yu, 2009. "Dating the Timeline of Financial Bubbles During the Subprime Crisis," Working Papers CoFie-07-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Peter C. B. Phillips & Jun Yu, 2010. "Dating the Timeline of Financial Bubbles during the Subprime Crisis," Cowles Foundation Discussion Papers 1770, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Jun Yu, 2009. "Dating the Timeline of Financial Bubbles During the Subprime Crisis," Finance Working Papers 23051, East Asian Bureau of Economic Research.
- Peter C. B. Phillips & Jun Yu, 2009. "Dating the Timeline of Financial Bubbles During the Subprime Crisis," Working Papers 18-2009, Singapore Management University, School of Economics.
- Fries, Sébastien & Zakoian, Jean-Michel, 2019.
"Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles,"
Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
- Fries, Sébastien & Zakoian, Jean-Michel, 2017. "Mixed Causal-Noncausal AR Processes and the Modelling of Explosive Bubbles," MPRA Paper 81345, University Library of Munich, Germany.
- Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012.
"Optimal forecasting of noncausal autoregressive time series,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
- Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2010. "Optimal Forecasting of Noncausal Autoregressive Time Series," MPRA Paper 23648, University Library of Munich, Germany.
- Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
- Alain Hecq & Elisa Voisin, 2023.
"Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models,"
Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233,
Emerald Group Publishing Limited.
- Alain Hecq & Elisa Voisin, 2019. "Predicting crashes in oil prices during the COVID-19 pandemic with mixed causal-noncausal models," Papers 1911.10916, arXiv.org, revised May 2022.
- Lanne Markku & Saikkonen Pentti, 2011.
"Noncausal Autoregressions for Economic Time Series,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal autoregressions for economic time series," MPRA Paper 32943, University Library of Munich, Germany.
- Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
- Hecq, Alain & Voisin, Elisa, 2021.
"Forecasting bubbles with mixed causal-noncausal autoregressive models,"
Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
- Voisin, Elisa & Hecq, Alain, 2019. "Forecasting bubbles with mixed causal-noncausal autoregressive models," MPRA Paper 92734, University Library of Munich, Germany.
- Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
- Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
- Alain Hecq & Elisa Voisin, 2023.
"Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models,"
Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233,
Emerald Group Publishing Limited.
- Alain Hecq & Elisa Voisin, 2019. "Predicting crashes in oil prices during the COVID-19 pandemic with mixed causal-noncausal models," Papers 1911.10916, arXiv.org, revised May 2022.
- Hecq, Alain & Voisin, Elisa, 2021.
"Forecasting bubbles with mixed causal-noncausal autoregressive models,"
Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
- Voisin, Elisa & Hecq, Alain, 2019. "Forecasting bubbles with mixed causal-noncausal autoregressive models," MPRA Paper 92734, University Library of Munich, Germany.
- Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
- Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023.
"Optimization of the Generalized Covariance Estimator in Noncausal Processes,"
Papers
2306.14653, arXiv.org, revised Jan 2024.
- Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2024. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," CEIS Research Paper 574, Tor Vergata University, CEIS, revised 23 Apr 2024.
- Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
- Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024.
"A short term credibility index for central banks under inflation targeting: An application to Brazil,"
Journal of International Money and Finance, Elsevier, vol. 143(C).
- Alain Hecq & Joao Issler & Elisa Voisin, 2022. "A short term credibility index for central banks under inflation targeting: an application to Brazil," Papers 2205.00924, arXiv.org, revised Jul 2022.
- Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
- Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020.
"Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," THEMA Working Papers 2019-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing [Modèles auto-régressifs non-causaux mixtes: Problèmes de bimodalité pour l'estimation et le test de r," Working Papers hal-02175760, HAL.
- Frédérique BEC & Heino BOHN NIELSEN & Sarra SAÏDI, 2019. "Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Working Papers 2019-09, Center for Research in Economics and Statistics.
- Xuanling Yang & Dong Li & Ting Zhang, 2024. "A simple stochastic nonlinear AR model with application to bubble," Papers 2401.07038, arXiv.org.
- Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
- Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
- Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
- Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
- Lanne Markku, 2015.
"Noncausality and inflation persistence,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
- Markku Lanne, 2013. "Noncausality and Inflation Persistence," Discussion Papers of DIW Berlin 1286, DIW Berlin, German Institute for Economic Research.
- Gianluca Cubadda & Alain Hecq & Sean Telg, 2019.
"Detecting Co‐Movements in Non‐Causal Time Series,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
- Cubadda, Gianluca & Hecq, Alain & Telg, Sean, 2017. "Detecting Co-Movements in Noncausal Time Series," MPRA Paper 77254, University Library of Munich, Germany, revised 02 Mar 2017.
- Gianluca Cubadda & Alain Hecq & Sean Telg, 2018. "Detecting Co-Movements in Noncausal Time Series," CEIS Research Paper 430, Tor Vergata University, CEIS, revised 23 Apr 2018.
- Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022.
"Is Climate Change Time-Reversible?,"
Econometrics, MDPI, vol. 10(4), pages 1-18, December.
- Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is climate change time reversible?," Papers 2205.07579, arXiv.org, revised Nov 2022.
- Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is climate change time-reversible?," Working Papers 498, University of Milano-Bicocca, Department of Economics, revised Nov 2022.
- Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is climate change time reversible?," Working Paper series 22-08, Rimini Centre for Economic Analysis, revised Dec 2022.
- Lanne, Markku & Saikkonen, Pentti, 2013.
"Noncausal Vector Autoregression,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
- Lanne, Markku & Saikkonen, Pentti, 2009. "Noncausal vector autoregression," Bank of Finland Research Discussion Papers 18/2009, Bank of Finland.
- Lanne, Markku & Saikkonen, Pentti, 2010. "Noncausal Vector Autoregression," MPRA Paper 23717, University Library of Munich, Germany.
- Weifeng Jin, 2023. "Quantile Autoregression-based Non-causality Testing," Papers 2301.02937, arXiv.org.
More about this item
Keywords
noncausality; bubbles; testing; date-stamping; risk assessment;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-09-16 (Econometrics)
- NEP-ETS-2024-09-16 (Econometric Time Series)
- NEP-MAC-2024-09-16 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240036. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.