IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240036.html
   My bibliography  Save this paper

A Novel Test for the Presence of Local Explosive Dynamics

Author

Listed:
  • F. Blasques

    (Vrije Universiteit Amsterdam)

  • S.J. Koopman

    (Vrije Universiteit Amsterdam)

  • G. Mingoli

    (Vrije Universiteit Amsterdam)

  • S. Telg

    (Vrije Universiteit Amsterdam)

Abstract

In economics and finance, speculative bubbles take the form of locally explosive dynamics that eventually collapse. We propose a test for the presence of speculative bubbles in the context of mixed causal-noncausal autoregressive processes. The test exploits the fact that bubbles are anticipative, that is, they are generated by an extreme shock in the forward- looking dynamics. In particular, the test uses both path level deviations and growth rates to assess the presence of a bubble of given duration and size, at any moment of time. We show that the distribution of the test statistic can be either analytically determined or numerically approximated, depending on the error distribution. Size and power properties of the test are analyzed in controlled Monte Carlo experiments. An empirical application is presented for a monthly oil price index. It demonstrates the ability of the test to detect bubbles and to provide valuable insights in terms of risk assessments in the spirit of Value-at-Risk.

Suggested Citation

  • F. Blasques & S.J. Koopman & G. Mingoli & S. Telg, 2024. "A Novel Test for the Presence of Local Explosive Dynamics," Tinbergen Institute Discussion Papers 24-036/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240036
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24036.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    2. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    3. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    4. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    5. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    6. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    7. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    8. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    9. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    10. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    11. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Mingoli, 2024. "Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model," Tinbergen Institute Discussion Papers 24-072/III, Tinbergen Institute.
    2. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    3. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    4. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    5. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    6. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    7. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    8. Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024. "A short term credibility index for central banks under inflation targeting: An application to Brazil," Journal of International Money and Finance, Elsevier, vol. 143(C).
    9. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    10. Giancaterini, Francesco & Hecq, Alain, 2025. "Inference in mixed causal and noncausal models with generalized Student’s t-distributions," Econometrics and Statistics, Elsevier, vol. 33(C), pages 1-12.
    11. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    12. Xuanling Yang & Dong Li & Ting Zhang, 2024. "A simple stochastic nonlinear AR model with application to bubble," Papers 2401.07038, arXiv.org.
    13. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    14. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    15. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    16. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    17. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    18. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    19. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    20. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.

    More about this item

    Keywords

    noncausality; bubbles; testing; date-stamping; risk assessment;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.