IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v35y2019i6p1234-1270_5.html

Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles

Author

Listed:
  • Fries, Sébastien
  • Zakoian, Jean-Michel

Abstract

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.

Suggested Citation

  • Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
  • Handle: RePEc:cup:etheor:v:35:y:2019:i:6:p:1234-1270_5
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466618000452/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:35:y:2019:i:6:p:1234-1270_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.