IDEAS home Printed from https://ideas.repec.org/p/koc/wpaper/1003.html
   My bibliography  Save this paper

A note on the geometric ergodicity of a nonlinear AR–ARCH model

Author

Listed:
  • Mika Meitz

    () (Koc University)

  • Pentti Saikkonen

    (University of Helsinki)

Abstract

This note studies the geometric ergodicity of nonlinear autoregressive models with conditionally heteroskedastic errors. A nonlinear autoregression of order p (AR(p)) with the conditional variance specified as the conventional linear autoregressive conditional heteroskedasticity model of order q (ARCH(q)) is considered. Conditions under which the Markov chain representation of this nonlinear AR– ARCH model is geometrically ergodic and has moments of known order are provided. The obtained results complement those of Liebscher [Journal of Time Series Analysis, 26 (2005), 669–689] by showing how his approach based on the concept of the joint spectral radius of a set of matrices can be extended to establish geometric ergodicity in nonlinear autoregressions with conventional ARCH(q) errors.

Suggested Citation

  • Mika Meitz & Pentti Saikkonen, 2010. "A note on the geometric ergodicity of a nonlinear AR–ARCH model," Koç University-TUSIAD Economic Research Forum Working Papers 1003, Koc University-TUSIAD Economic Research Forum.
  • Handle: RePEc:koc:wpaper:1003
    as

    Download full text from publisher

    File URL: http://eaf.ku.edu.tr/sites/eaf.ku.edu.tr/files/erf_wp_1003.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR-GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    3. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    4. Daren B. H. Cline, 2007. "Evaluating the Lyapounov Exponent and Existence of Moments for Threshold AR-ARCH Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 241-260, March.
    5. Cline, Daren B. H. & Pu, Huay-min H., 1998. "Verifying irreducibility and continuity of a nonlinear time series," Statistics & Probability Letters, Elsevier, vol. 40(2), pages 139-148, September.
    6. Eckhard Liebscher, 2005. "Towards a Unified Approach for Proving Geometric Ergodicity and Mixing Properties of Nonlinear Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 669-689, September.
    7. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
    2. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Nonlinear Autoregression; Autoregressive Conditional Heteroskedasticity; Nonlinear Time Series Models; Geometric Ergodicity; Mixing; Strict Stationarity; Existence of Moments; Markov Models;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:koc:wpaper:1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sumru Oz). General contact details of provider: http://edirc.repec.org/data/dekoctr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.