IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i9p2044-2054.html
   My bibliography  Save this article

On asymptotic theory for multivariate GARCH models

Author

Listed:
  • Hafner, Christian M.
  • Preminger, Arie

Abstract

The paper investigates the asymptotic theory for a multivariate GARCH model in its general vector specification proposed by Bollerslev, Engle and Wooldridge (1988)Â [4], known as the VEC model. This model includes as important special cases the so-called BEKK model and many versions of factor GARCH models, which are often used in practice. We provide sufficient conditions for strict stationarity and geometric ergodicity. The strong consistency of the quasi-maximum likelihood estimator (QMLE) is proved under mild regularity conditions which allow the process to be integrated. In order to obtain asymptotic normality, the existence of sixth-order moments of the process is assumed.

Suggested Citation

  • Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2044-2054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00069-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian M. Hafner, 2003. "Fourth Moment Structure of Multivariate GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 26-54.
    2. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1291-1320, October.
    3. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    4. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    5. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    6. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    7. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    8. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, vol. 23(02), pages 251-280, April.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    11. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(02), pages 336-363, April.
    12. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    13. Christian Francq & Jean-Michel Zakoïan, 2006. "Inference in GARCH when some coefficients are equal to zero," Computing in Economics and Finance 2006 64, Society for Computational Economics.
    14. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    15. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    16. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    17. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    18. Kristensen, Dennis & Rahbek, Anders, 2005. "ASYMPTOTICS OF THE QMLE FOR A CLASS OF ARCH(q) MODELS," Econometric Theory, Cambridge University Press, vol. 21(05), pages 946-961, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thieu, Le Quyen, 2016. "Variance targeting estimation of the BEKK-X model," MPRA Paper 75572, University Library of Munich, Germany.
    2. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    3. Tomasz Wozniak, 2015. "Granger-causal analysis of GARCH models: a Bayesian approach," Department of Economics - Working Papers Series 1194, The University of Melbourne.
    4. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    5. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    6. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    7. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    8. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    9. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    10. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    11. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    12. Resende, Paulo Angelo Alves & Dorea, Chang Chung Yu, 2016. "Model identification using the Efficient Determination Criterion," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 229-244.
    13. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models," Economics Working Paper Series 1517, University of St. Gallen, School of Economics and Political Science.
    14. Thieu, Le Quyen, 2016. "Equation by equation estimation of the semi-diagonal BEKK model with covariates," MPRA Paper 75582, University Library of Munich, Germany.
    15. Monica Billio & Massimiliano Caporin & Lorenzo Frattarolo & Loriana Pelizzon, 2016. "Networks in risk spillovers: a multivariate GARCH perspective," Working Papers 2016:03, Department of Economics, University of Venice "Ca' Foscari".
    16. Poloni, Federico & Sbrana, Giacomo, 2014. "Feasible generalized least squares estimation of multivariate GARCH(1, 1) models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 151-159.
    17. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2044-2054. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.