IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v17y2002i5p549-564.html
   My bibliography  Save this article

GO-GARCH: a multivariate generalized orthogonal GARCH model

Author

Listed:
  • Roy van der Weide

    (Department of Economics, CeNDEF, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands)

Abstract

Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O-GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model. Copyright © 2002 John Wiley & Sons, Ltd.

Suggested Citation

  • Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
  • Handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:549-564
    DOI: 10.1002/jae.688
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.688
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2002-v17.5/
    File Function: Supporting data files and programs
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    4. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    5. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    6. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    7. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    8. Yiu Kuen Tse & Albert K. C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying Correlations," Econometric Society World Congress 2000 Contributed Papers 0250, Econometric Society.
    9. Klaassen, F.J.G.M., 1999. "Have Exchange Rates Become More Closely Tied? Evidence from a New Multivariate GARCH Model," Discussion Paper 1999-10, Tilburg University, Center for Economic Research.
    10. F. Comte & Offer Lieberman, 2001. "Asymptotic Theory for Multivariate GARCH Processes," Cowles Foundation Discussion Papers 1349, Cowles Foundation for Research in Economics, Yale University.
    11. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    12. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    13. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    14. Carol Alexander, 2002. "Principal Component Models for Generating Large GARCH Covariance Matrices," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 337-359, July.
    15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    16. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    17. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    2. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    6. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    7. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    8. Kuper, Gerard H. & Lestano, 2007. "Dynamic conditional correlation analysis of financial market interdependence: An application to Thailand and Indonesia," Journal of Asian Economics, Elsevier, vol. 18(4), pages 670-684, August.
    9. Y. K. Tse & Albert K. C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying correlations," Econometrics 0004010, University Library of Munich, Germany.
    10. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    11. Hafner, Christian M., 2000. "Fourth moments of multivariate GARCH processes," SFB 373 Discussion Papers 2000,80, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    13. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    14. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    15. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    16. Arie Preminger & Christian M. Hafner, 2006. "Asymptotic Theory For A Factor Garch Model," Working Papers 0608, Ben-Gurion University of the Negev, Department of Economics.
    17. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, May.
    18. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.
    19. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    20. Paul Catani & Timo Teräsvirta & Meiqun Yin, 2017. "A Lagrange multiplier test for testing the adequacy of constant conditional correlation GARCH model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 599-621, October.
    21. Elena Andreou & Eric Ghysels, 2002. "Tests for Breaks in the Conditional Co-movements of Asset Returns," CIRANO Working Papers 2002s-59, CIRANO.

    More about this item

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. GO-GARCH: a multivariate generalized orthogonal GARCH model (Journal of Applied Econometrics 2002) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:549-564. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.