IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1721.html
   My bibliography  Save this paper

Analytical quasi maximum likelihood inference in multivariate volatility models

Author

Listed:
  • Hafner, C.M.
  • Herwartz, H.

Abstract

Quasi maximum likelihood estimation and inference in multivariate volatility models remains a challenging computational task if, for example, the dimension is high. One of the reasons is that typically numerical procedures are used to compute the score and the Hessian, and often they are numerically unstable. We provide analytical formulae for the score and the Hessian and show in a simulation study that they clearly outperform numerical methods. As an example, we use the popular BEKK-GARCH model, for which we derive first and second order derivatives.

Suggested Citation

  • Hafner, C.M. & Herwartz, H., 2003. "Analytical quasi maximum likelihood inference in multivariate volatility models," Econometric Institute Research Papers EI 2003-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1721
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1721/feweco20030806160716.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    3. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    4. Herwartz, Helmut & Neumann, Michael H., 2005. "Bootstrap inference in systems of single equation error correction models," Journal of Econometrics, Elsevier, vol. 128(1), pages 165-193, September.
    5. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    6. Christian M. Hafner & Helmut Herwartz, 2000. "Testing for linear autoregressive dynamics under heteroskedasticity," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 177-197.
    7. Lucchetti, Riccardo, 2002. "Analytical Score for Multivariate GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 19(2), pages 133-143, April.
    8. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, pages 213-237.
    9. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    10. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    11. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    12. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    2. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    4. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models," Economics Working Paper Series 1517, University of St. Gallen, School of Economics and Political Science.
    5. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Christian M. Hafner & Helmut Herwartz, 2008. "Testing for Causality in Variance Usinf Multivariate GARCH Models," Annals of Economics and Statistics, GENES, issue 89, pages 215-241.
    7. Krishnakumar, Jaya & Kabili, Andi & Roko, Ilir, 2012. "Estimation of SEM with GARCH errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3153-3181.
    8. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    9. Burda Martin, 2015. "Constrained Hamiltonian Monte Carlo in BEKK GARCH with Targeting," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 1-19, January.
    10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    11. Chrétien, Stéphane & Ortega, Juan-Pablo, 2014. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 210-236.
    12. Wasel Shadat & Chris Orme, 2011. "An investigation of parametric tests of CCC assumption," The School of Economics Discussion Paper Series 1109, Economics, The University of Manchester.
    13. Walid Ben Omrane & Christian M. Hafner, 2009. "Information Spillover, Volatility and the Currency Markets for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 50-62, April.
    14. Martin Burda & John Maheu, 2011. "Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Papers tecipa-438, University of Toronto, Department of Economics.
    15. K. Diamantopoulos & I. Vrontos, 2010. "A Student-t Full Factor Multivariate GARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 63-83, January.
    16. Poloni, Federico & Sbrana, Giacomo, 2014. "Feasible generalized least squares estimation of multivariate GARCH(1, 1) models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 151-159.
    17. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.
    18. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    19. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

    More about this item

    Keywords

    multivariate GARCH models; quasi maximum likelihood;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1721. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.