IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/20034.html

Testing for vector autoregressive dynamics under heteroskedasticity

Author

Listed:
  • Hafner, Christian M.
  • Herwartz, Helmut

Abstract

In this paper we introduce a bootstrap procedure to test parameter restrictions in vector autoregressive models which is robust in cases of conditionally heteroskedastic error terms. The adopted wild bootstrap method does not require any parametric specification of the volatility process and takes contemporaneous error correlation implicitly into account. Via a Monte Carlo investigation empirical size and power properties of the new method are illustrated. We compare the bootstrap approach with standard procedures either ignoring heteroskedasticity or adopting a spirit of the White correction. In terms of empirical size the proposed method clearly outperforms competing approaches without paying any price in terms of size adjusted power. We apply the alternative tests to investigate the potential of causal relationships linking daily prices of natural gas and crude oil. Unlike standard inference ignoring time varying error variances, heteroskedasticity consistent test procedures do not deliver any evidence in favor of short run causality between the two series.

Suggested Citation

  • Hafner, Christian M. & Herwartz, Helmut, 2002. "Testing for vector autoregressive dynamics under heteroskedasticity," SFB 373 Discussion Papers 2003,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:20034
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/66291/1/730066762.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian M. Hafner & Helmut Herwartz, 2009. "Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 294-323, August.
    2. Christian Hafner & Helmut Herwartz, 2008. "Analytical quasi maximum likelihood inference in multivariate volatility models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 219-239, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:20034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.