IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

On the forecasting accuracy of multivariate GARCH models

  • Sébastien Laurent
  • Jeroen V. K. Rombouts
  • Francesco Violante

This paper addresses the question of the selection of multivariate GARCH models in terms of variance matrix forecasting accuracy with a particular focus on relatively large scale problems. We consider 10 assets from NYSE and NASDAQ and compare 125 model based one-step-ahead conditional variance forecasts over a period of 10 years using the model confidence set (MCS) and the Superior Predictive Ability (SPA) tests. Model performances are evaluated using four statistical loss functions which account for different types and degrees of asymmetry with respect to over/under predictions. When considering the full sample, MCS results are strongly driven by short periods of high market instability during which multivariate GARCH models appear to be inaccurate. Over relatively unstable periods, i.e. dot-com bubble, the set of superior models is composed of more sophisticated specifications such as orthogonal and dynamic conditional correlation (DCC), both with leverage effect in the conditional variances. However, unlike the DCC models, our results show that the orthogonal specifications tend to underestimate the conditional variance. Over calm periods, a simple assumption like constant conditional correlation and symmetry in the conditional variances cannot be rejected. Finally, during the 2007-2008 financial crisis, accounting for non-stationarity in the conditional variance process generates superior forecasts. The SPA test suggests that, independently from the period, the best models do not provide significantly better forecasts than the DCC model of Engle (2002) with leverage in the conditional variances of the returns.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 27 (2012)
Issue (Month): 6 (09)
Pages: 934-955

as
in new window

Handle: RePEc:wly:japmet:v:27:y:2012:i:6:p:934-955
Contact details of provider: Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information: Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252 Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
  2. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
  5. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  6. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
  7. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702.
  8. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
  9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  11. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
  12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  13. Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
  14. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
  15. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  16. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  17. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
  18. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
  19. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  20. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
  21. Palandri, Alessandro, 2009. "Sequential conditional correlations: Inference and evaluation," Journal of Econometrics, Elsevier, vol. 153(2), pages 122-132, December.
  22. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  23. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  24. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  25. Ralf Becker & Adam Clements, 2007. "Are combination forecasts of S&P 500 volatility statistically superior?," NCER Working Paper Series 17, National Centre for Econometric Research.
  26. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  27. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  28. repec:oxf:wpaper:264 is not listed on IDEAS
  29. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
  30. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  32. Robert F. Engle & Victor Ng & Michael Rothschild, 1988. "Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills," NBER Technical Working Papers 0065, National Bureau of Economic Research, Inc.
  33. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  34. Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
  35. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  36. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
  37. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  38. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  39. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, . "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
  40. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  41. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
  42. Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
  43. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  44. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
  45. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," LSE Research Online Documents on Economics 22875, London School of Economics and Political Science, LSE Library.
  46. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  47. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
  48. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:27:y:2012:i:6:p:934-955. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.