IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v27y2008i1-3p79-111.html
   My bibliography  Save this article

Moving Average-Based Estimators of Integrated Variance

Author

Listed:
  • Peter Hansen
  • Jeremy Large
  • Asger Lunde

Abstract

We examine moving average (MA) filters for estimating the integrated variance (IV) of a financial asset price in a framework where high-frequency price data are contaminated with market microstructure noise. We show that the sum of squared MA residuals must be scaled to enable a suitable estimator of IV. The scaled estimator is shown to be consistent, first-order efficient, and asymptotically Gaussian distributed about the integrated variance under restrictive assumptions. Under more plausible assumptions, such as time-varying volatility, the MA model is misspecified. This motivates an extensive simulation study of the merits of the MA-based estimator under misspecification. Specifically, we consider nonconstant volatility combined with rounding errors and various forms of dependence between the noise and efficient returns. We benchmark the scaled MA-based estimator to subsample and realized kernel estimators and find that the MA-based estimator performs well despite the misspecification.

Suggested Citation

  • Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
  • Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:79-111 DOI: 10.1080/07474930701853640
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701853640
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    3. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, pages 701-720.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    8. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:79-111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.