IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v9y2011i4p619-656.html
   My bibliography  Save this article

Merits and Drawbacks of Variance Targeting in GARCH Models

Author

Listed:
  • Christian Francq
  • Lajos Horváth

Abstract

Variance targeting estimation (VTE) is a technique used to alleviate the numerical difficulties encountered in the quasi-maximum likelihood estimation (QMLE) of GARCH models. It relies on a reparameterization of the model and a first-step estimation of the unconditional variance. The remaining parameters are estimated by quasi maximum likelihood (QML) in a second step. This paper establishes the asymptotic distribution of the estimators obtained by this method in univariate GARCH models. Comparisons with the standard QML are provided and the merits of the variance targeting method are discussed. In particular, it is shown that when the model is misspecified, the VTE can be superior to the QMLE for long-term prediction or value-at-risk calculation. An empirical application based on stock market indices is proposed. Copyright The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com., Oxford University Press.

Suggested Citation

  • Christian Francq & Lajos Horváth, 2011. "Merits and Drawbacks of Variance Targeting in GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(4), pages 619-656.
  • Handle: RePEc:oup:jfinec:v:9:y:2011:i:4:p:619-656
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbr004
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lajos Horváth & Piotr Kokoszka & Ricardas Zitikis, 2006. "Sample and Implied Volatility in GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 617-635.
    2. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    7. Francq, Christian & Zako an, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(05), pages 815-834, October.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:9:y:2011:i:4:p:619-656. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sofieea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.