IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v3y2015i1p2-54d44835.html
   My bibliography  Save this article

Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

Author

Listed:
  • Isao Ishida

    (Faculty of Economics, Konan University, 8-9-1 Okamoto, Higashinada-Ku, Kobe 658-8501, Japan)

  • Virmantas Kvedaras

    (Department of Econometric Analysis, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania)

Abstract

We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500) and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

Suggested Citation

  • Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
  • Handle: RePEc:gam:jecnmx:v:3:y:2015:i:1:p:2-54:d:44835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/3/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/3/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    2. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    3. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    4. Hall, Peter & Peng, Liang & Yao, Qiwei, 2002. "Moving-maximum models for extrema of time series," LSE Research Online Documents on Economics 6084, London School of Economics and Political Science, LSE Library.
    5. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    6. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    7. Kvedaras, Virmantas & Zemlys, Vaidotas, 2012. "Testing the functional constraints on parameters in regressions with variables of different frequency," Economics Letters, Elsevier, vol. 116(2), pages 250-254.
    8. Todd E. Clark & Michael W. Mccracken, 2014. "Tests Of Equal Forecast Accuracy For Overlapping Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 415-430, April.
    9. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    10. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2013. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, volume 2, number 2-a, March.
    11. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    12. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    13. Eckhard Liebscher, 2005. "Towards a Unified Approach for Proving Geometric Ergodicity and Mixing Properties of Nonlinear Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 669-689, September.
    14. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    15. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    16. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    17. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    18. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    19. Andrew P. Blake & George Kapetanios, 2003. "A radial basis function artificial neural network test for neglected nonlinearity," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 357-373, December.
    20. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    23. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    24. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
    25. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    26. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    27. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    28. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    29. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    30. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    31. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    32. Meitz, Mika & Saikkonen, Pentti, 2010. "A note on the geometric ergodicity of a nonlinear AR-ARCH model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 631-638, April.
    33. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    34. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    35. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2013. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, volume 2, number 2-b, March.
    36. Virmantas Kvedaras & Alfredas Račkauskas, 2010. "Regression Models with Variables of Different Frequencies: The Case of a Fixed Frequency Ratio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 600-620, October.
    37. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    38. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    39. Hubrich, Kirstin & D’Agostino, Antonello & Cervená, Marianna & Ciccarelli, Matteo & Guarda, Paolo & Haavio, Markus & Jeanfils, Philippe & Mendicino, Caterina & Ortega, Eva & Valderrama, Maria Teresa &, 2013. "Financial shocks and the macroeconomy: heterogeneity and non-linearities," Occasional Paper Series 143, European Central Bank.
    40. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.
    41. Vadim Teverovsky & Murad Taqqu, 1997. "Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(3), pages 279-304, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    2. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    3. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    4. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    5. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    6. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    7. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    8. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    9. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    10. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    11. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    12. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    13. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    14. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
    15. Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
    16. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    17. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    18. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    19. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    20. Hadhri, Sinda & Ftiti, Zied, 2019. "Commonality in liquidity among Middle East and North Africa emerging stock markets: Does it really matter?," Economic Systems, Elsevier, vol. 43(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:3:y:2015:i:1:p:2-54:d:44835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.