IDEAS home Printed from https://ideas.repec.org/p/aah/create/2012-30.html
   My bibliography  Save this paper

Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models

Author

Listed:
  • Eric Hillebrand

    () (Aarhus University and CREATES)

  • Marcelo C. Medeiros

    () (PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO)

Abstract

We study the simultaneous occurrence of long memory and nonlinear effects, such as parameter changes and threshold effects, in ARMA time series models and apply our modeling framework to daily realized volatility. Asymptotic theory for parameter estimation is developed and two model building procedures are proposed. The methodology is applied to stocks of the Dow Jones Industrial Average during the period 2000 to 2009. We find strong evidence of nonlinear effects.

Suggested Citation

  • Eric Hillebrand & Marcelo C. Medeiros, 2012. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," CREATES Research Papers 2012-30, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2012-30
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/12/rp12_30.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," CQE Working Papers 6117, Center for Quantitative Economics (CQE), University of Muenster.
    2. Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
    3. repec:gam:jecnmx:v:6:y:2018:i:2:p:23-:d:143630 is not listed on IDEAS

    More about this item

    Keywords

    Smooth transitions; long memory; forecasting; realized volatility.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.