IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The Volatility of Realized Volatility

  • Fulvio Corsi
  • Stefan Mittnik
  • Christian Pigorsch
  • Uta Pigorsch

In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. The construction of “observable” or realized volatility series from intra-day transaction data and the use of standard time-series techniques has lead to promising strategies for modeling and predicting (daily) volatility. In this article, we show that the residuals of commonly used time-series models for realized volatility and logarithmic realized variance exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance for modeling and forecasting realized volatility. In an empirical application for S&P 500 index futures we show that allowing for time-varying volatility of realized volatility and logarithmic realized variance substantially improves the fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701853616
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 27 (2008)
Issue (Month): 1-3 ()
Pages: 46-78

as
in new window

Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:46-78
Contact details of provider: Web page: http://www.tandfonline.com/LECR20

Order Information: Web: http://www.tandfonline.com/pricing/journal/LECR20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
  2. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
  3. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
  5. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  6. Robert C. Merton, 1980. "On Estimating the Expected Return on the Market: An Exploratory Investigation," NBER Working Papers 0444, National Bureau of Economic Research, Inc.
  7. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:46-78. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.