IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v5y1998i2p99-128.html
   My bibliography  Save this article

Unconditional and Conditional Distributional Models for the Nikkei Index

Author

Listed:
  • Stefan Mittnik
  • Marc Paolella
  • Svetlozar Rachev

Abstract

We investigate alternative unconditional and conditional distributional models for the returns on Japan's Nikkei 225 stock market index. Among them is the recently introduced class of ARMA-GARCH models driven by α-stable (or stable Paretian) distributed innovations, designed to capture the observed serial dependence, conditional heteroskedasticity and fat-tailedness present in the return data. Of the eight entertained distributions, the partially asymmetric Weibull, Student's t and asymmetric α-stable present themselses as the most viable candidates in terms of overall fit. However, the tails of the sample distribution are approximated best by the asymmetric α-stable distribution. Good tail approximations are particularly important for risk assessments. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
  • Handle: RePEc:kap:apfinm:v:5:y:1998:i:2:p:99-128 DOI: 10.1023/A:1010016831481
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1010016831481
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401.
    2. Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Butler, Richard J, et al, 1990. "Robust and Partially Adaptive Estimation of Regression Models," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 321-327, May.
    5. Bera, Anil K & Higgins, Matthew L & Lee, Sangkyu, 1992. "Interaction between Autocorrelation and Conditional Heteroscedasticity: A Random-Coefficient Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 133-142, April.
    6. Deb, Partha & Sefton, Martin, 1996. "The distribution of a Lagrange multiplier test of normality," Economics Letters, Elsevier, vol. 51(2), pages 123-130, May.
    7. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    10. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    11. Francis X. Diebold & Til Schuermann, 1993. "Exact maximum likelihood estimation of ARCH models," Working Papers 93-4, Federal Reserve Bank of Philadelphia.
    12. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    13. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    16. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Haas & Stefan Mittnik & Marc Paolella, 2006. "Modelling and predicting market risk with Laplace-Gaussian mixture distributions," Applied Financial Economics, Taylor & Francis Journals, pages 1145-1162.
    2. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
    3. repec:gam:jecnmx:v:4:y:2016:i:2:p:25:d:69492 is not listed on IDEAS
    4. José Dias Curto & João Tomaz & José Castro Pinto, 2009. "A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 8(1), pages 23-36, April.
    5. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    6. Fischer, Matthias J., 2002. "Skew generalized secant hyperbolic distributions: unconditional and conditional fit to asset returns," Discussion Papers 46/2002, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    7. Fabio Pizzutilo, 2013. "The Distribution of the Returns of Japanese Stocks and Portfolios," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(9), pages 1249-1259, September.
    8. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-28, May.
    9. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, pages 215-230.
    10. Fischer, Matthias J. & Vaughan, David, 2002. "Classes of skew generalized hyperbolic secant distributions," Discussion Papers 45/2002, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    11. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.
    12. Gel, Yulia R., 2010. "Test of fit for a Laplace distribution against heavier tailed alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 958-965, April.
    13. repec:hal:journl:peer-00834423 is not listed on IDEAS
    14. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    15. Fischer, Matthias J., 2000. "The folded EGB2 distribution and its application to financial return data," Discussion Papers 32/2000, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    16. Richard Harris & C. Coskun Kucukozmen & Fatih Yilmaz, 2004. "Skewness in the conditional distribution of daily equity returns," Applied Financial Economics, Taylor & Francis Journals, pages 195-202.
    17. Lee, Tae-Hwy & Saltoglu, Burak, 2002. "Assessing the risk forecasts for Japanese stock market," Japan and the World Economy, Elsevier, vol. 14(1), pages 63-85, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:5:y:1998:i:2:p:99-128. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.