A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)
Author
Abstract
Suggested Citation
DOI: 10.1007/s10258-009-0037-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Niklas Wagner & Terry Marsh, 2005.
"Surprise volume and heteroskedasticity in equity market returns,"
Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
- Wagner, Niklas & Marsh, Terry A., 2004. "Surprise volume and heteroskedasticity in equity market returns," CEFS Working Paper Series 2004-03, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
- Niklas Wagner & Terry A. Marsh, 2004. "Surprise Volume and Heteroskedasticity in Equity Market Returns," Econometrics 0409009, University Library of Munich, Germany.
- David Harvey & Paul Newbold, 2000. "Tests for multiple forecast encompassing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 471-482.
- repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
- C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
- Mandelbrot, Benoit B, 1972.
"Correction of an Error in "The Variation of Certain Speculative Prices" (1963),"
The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
- Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394-394.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Peter Hansen & Asger Lunde, 2003. "Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models," Working Papers 2003-01, Brown University, Department of Economics.
- Benoit Mandelbrot, 2015.
"The Variation of Certain Speculative Prices,"
World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78,
World Scientific Publishing Co. Pte. Ltd..
- Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394-394.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ioannis A. Tampakoudis & Demetres N. Subeniotis & Ioannis G. Kroustalis, 2012. "Modelling volatility during the current financial crisis: an empirical analysis of the US and the UK stock markets," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(3/4), pages 171-194.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harry-Paul Vander Elst, 2015.
"FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility,"
Working Papers ECARES
ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
- Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
- Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
- José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
- Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
- Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
- N. Antonakakis & J. Darby, 2013.
"Forecasting volatility in developing countries' nominal exchange returns,"
Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
- Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
- Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
- Djahoué Mangblé Gérald, 2018. "Estimating and Forecasting West Africa Stock Market Volatility Using Asymmetric GARCH Models," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-4.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Virk, Nader & Javed, Farrukh & Awartani, Basel, 2021. "A reality check on the GARCH-MIDAS volatility models," Working Papers 2021:2, Örebro University, School of Business.
- Benavides, Guillermo & Capistrán, Carlos, 2012.
"Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts,"
Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
- Benavides Guillermo & Capistrán Carlos, 2009. "Forecasting Exchange Rate Volatility: The Superior Performance of Conditional Combinations of Time Series and Option Implied Forecasts," Working Papers 2009-01, Banco de México.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005.
"Evaluating volatility forecasts in option pricing in the context of a simulated options market,"
Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating Volatility Forecasts in Option Pricing in the Context of a Simulated Options Market," MPRA Paper 80468, University Library of Munich, Germany.
- Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
- Almeida e Santos Nogueira, R.J. & Basturk, N. & Kaymak, U. & Costa Sousa, J.M., 2013. "Estimation of flexible fuzzy GARCH models for conditional density estimation," ERIM Report Series Research in Management ERS-2013-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, May.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
More about this item
Keywords
; ; ; ; ; ; ; ; ;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:portec:v:8:y:2009:i:1:p:23-36. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.