IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v29y2014i3p415-430.html

Tests Of Equal Forecast Accuracy For Overlapping Models

Author

Listed:
  • Todd E. Clark
  • Michael W. Mccracken

Abstract

SUMMARY This paper examines the asymptotic and finite‐sample properties of tests of equal forecast accuracy when the models being compared are overlapping in the sense of Vuong (Econometrica 1989; 57 : 307–333). Two models are overlapping when the true model contains just a subset of variables common to the larger sets of variables included in the competing forecasting models. We consider an out‐of‐sample version of the two‐step testing procedure recommended by Vuong but also show that an exact one‐step procedure is sometimes applicable. When the models are overlapping, we provide a simple‐to‐use fixed‐regressor wild bootstrap that can be used to conduct valid inference. Monte Carlo simulations generally support the theoretical results: the two‐step procedure is conservative, while the one‐step procedure can be accurately sized when appropriate. We conclude with an empirical application comparing the predictive content of credit spreads to growth in real stock prices for forecasting US real gross domestic product growth. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Todd E. Clark & Michael W. Mccracken, 2014. "Tests Of Equal Forecast Accuracy For Overlapping Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 415-430, April.
  • Handle: RePEc:wly:japmet:v:29:y:2014:i:3:p:415-430
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    2. Brent Meyer & Saeed Zaman, 2013. "It’s not just for inflation: The usefulness of the median CPI in BVAR forecasting," Working Papers (Old Series) 1303, Federal Reserve Bank of Cleveland.
    3. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Reprint of: Out-of-sample tests for conditional quantile coverage: An application to Growth-at-Risk," Journal of Econometrics, Elsevier, vol. 244(2).
    4. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2023. "Out-of-sample tests for conditional quantile coverage an application to Growth-at-Risk," Journal of Econometrics, Elsevier, vol. 236(2).
    5. T. S. McElroy, 2016. "Nonnested model comparisons for time series," Biometrika, Biometrika Trust, vol. 103(4), pages 905-914.
    6. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
    7. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Oguzhan Akgun & Alain Pirotte & Giovanni Urga & Zhenlin Yang, 2025. "Testing Clustered Equal Predictive Ability with Unknown Clusters," Papers 2507.14621, arXiv.org, revised Jul 2025.
    9. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    10. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    11. Arbués, Ignacio & Matilla-García, Mariano, 2024. "Multibenchmark reality checks," Economic Modelling, Elsevier, vol. 140(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:29:y:2014:i:3:p:415-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.