IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i3p618-626.html
   My bibliography  Save this article

Improving the power of the Diebold–Mariano–West test for least squares predictions

Author

Listed:
  • Mayer, Walter J.
  • Liu, Feng
  • Dang, Xin

Abstract

We propose a more powerful version of the test of Diebold and Mariano (1995) and West (1996) for comparing least squares predictors based on non-nested models when the parameter being tested is the expected difference between the squared prediction errors. The proposed test improves the asymptotic power by using a more efficient estimator of the parameter being tested than that used in the literature. The estimator used by the standard version of the test depends on the individual predictions and realizations only through the observations on the prediction errors. However, the parameter being tested can also be expressed in terms of moments of the predictors and the predicted variable, some of which cannot be identified separately by the observations on the prediction errors alone. Parameterizing these moments in a GMM framework and drawing on the theory of West (1996), we devise more powerful versions of the test by exploiting a restriction that is maintained routinely under the null hypothesis by West (1996, Assumption 2b) and later studies. This restriction requires only finite second-order moments and covariance stationarity in order to ensure that the population linear projection exists. Simulation experiments show that the potential gains in power can be substantial.

Suggested Citation

  • Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:3:p:618-626
    DOI: 10.1016/j.ijforecast.2017.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207017300237
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(03), pages 348-358, June.
    2. Todd E. Clark & Michael W. Mccracken, 2014. "Tests Of Equal Forecast Accuracy For Overlapping Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 415-430, April.
    3. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. West, K.D., 1994. "Asymptotic Inference About Predictive Ability: Additional Appendix," Working papers 9418, Wisconsin Madison - Social Systems.
    7. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    8. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    9. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    10. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    11. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    12. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
    13. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    14. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, March.
    17. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    18. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    19. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    20. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
    21. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    22. Diez de los Rios, Antonio, 2015. "Optimal asymptotic least squares estimation in a singular set-up," Economics Letters, Elsevier, vol. 128(C), pages 83-86.
    23. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    24. Randi Næs & Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2011. "Stock Market Liquidity and the Business Cycle," Journal of Finance, American Finance Association, vol. 66(1), pages 139-176, February.
    25. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    26. Massimiliano Marcellino & Barbara Rossi, 2008. "Model Selection for Nested and Overlapping Nonlinear, Dynamic and Possibly Mis‐specified Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 867-893, December.
    27. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
    28. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    29. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Prediction; Hypothesis tests;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:3:p:618-626. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.