IDEAS home Printed from
   My bibliography  Save this article

Point processes and multivariate extreme values


  • Deheuvels, Paul


A new model for point processes is developed which assumes that the interarrival times are exponentially distributed and follow joint multivariate extreme value distributions. It is shown that such processes may arise via natural generating procedures, and that, under very weak assumptions, that they can be approximated as closely as desired by appropriate finite models.

Suggested Citation

  • Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
  • Handle: RePEc:eee:jmvana:v:13:y:1983:i:2:p:257-272

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
    2. Fougères, Anne-Laure & Mercadier, Cécile & Nolan, John P., 2013. "Dense classes of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 109-129.
    3. Zhengjun Zhang, 2008. "The estimation of M4 processes with geometric moving patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 121-150, March.
    4. Ferreira, Helena, 2012. "Multivariate maxima of moving multivariate maxima," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1489-1496.
    5. Zhang, Zhengjun & Shinki, Kazuhiko, 2007. "Extreme co-movements and extreme impacts in high frequency data in finance," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1399-1415, May.
    6. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012. "Efficient estimation and particle filter for max‐stable processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
    7. Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
    8. repec:tky:fseres:2014cf952 is not listed on IDEAS
    9. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
    10. Kereszturi, Mónika & Tawn, Jonathan, 2017. "Properties of extremal dependence models built on bivariate max-linearity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 52-71.
    11. Zhengjun Zhang, 2009. "On approximating max-stable processes and constructing extremal copula functions," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 89-114, February.
    12. Zhang, Zhengjun & Zhu, Bin, 2016. "Copula structured M4 processes with application to high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 231-241.
    13. Jiménez, Javier Rojo & Villa-Diharce, Enrique & Flores, Miguel, 2001. "Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 159-191, February.
    14. Falk, Michael, 2011. "Local asymptotic normality in a stationary model for spatial extremes," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 48-60, January.
    15. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
    16. A. Martins & H. Ferreira, 2014. "Extremal properties of M4 processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 388-408, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:13:y:1983:i:2:p:257-272. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.