IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v76y2001i2p159-191.html
   My bibliography  Save this article

Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions

Author

Listed:
  • Jiménez, Javier Rojo
  • Villa-Diharce, Enrique
  • Flores, Miguel

Abstract

The paper considers the problem of estimating the dependence function of a bivariate extreme survival function with standard exponential marginals. Nonparametric estimators for the dependence function are proposed and their strong uniform convergence under suitable conditions is demonstrated. Comparisons of the proposed estimators with other estimators are made in terms of bias and mean squared error. Several real data sets from various applications are used to illustrate the procedures.

Suggested Citation

  • Jiménez, Javier Rojo & Villa-Diharce, Enrique & Flores, Miguel, 2001. "Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 159-191, February.
  • Handle: RePEc:eee:jmvana:v:76:y:2001:i:2:p:159-191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91931-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
    2. Rojo, J. & Samaniego, F. J., 1994. "Uniform Strong Consistent Estimation of an Ifra Distribution Function," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 150-163, April.
    3. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of an extreme-value copula in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 37-47, January.
    2. Bernhart German & Scherer Matthias & Mai Jan-Frederik, 2015. "On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions," Dependence Modeling, De Gruyter Open, vol. 3(1), pages 1-18, May.
    3. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    4. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On the distribution of Pickands coordinates in bivariate EV and GP models," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 267-295, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:76:y:2001:i:2:p:159-191. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.