IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v3y2015i1p18n3.html
   My bibliography  Save this article

On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions

Author

Listed:
  • Bernhart German
  • Scherer Matthias

    (Technische Universität München, Parkring 11, 85748 Garching-Hochbrück, Germany)

  • Mai Jan-Frederik

    (XAIA Investment GmbH, Sonnenstraße 19, 80331 München, Germany)

Abstract

Min-stable multivariate exponential (MSMVE) distributions constitute an important family of distributions, among others due to their relation to extreme-value distributions. Being true multivariate exponential models, they also represent a natural choicewhen modeling default times in credit portfolios. Despite being well-studied on an abstract level, the number of known parametric families is small. Furthermore, for most families only implicit stochastic representations are known. The present paper develops new parametric families of MSMVE distributions in arbitrary dimensions. Furthermore, a convenient stochastic representation is stated for such models, which is helpful with regard to sampling strategies.

Suggested Citation

  • Bernhart German & Scherer Matthias & Mai Jan-Frederik, 2015. "On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions," Dependence Modeling, Sciendo, vol. 3(1), pages 1-18, May.
  • Handle: RePEc:vrs:demode:v:3:y:2015:i:1:p:18:n:3
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/demo.2015.3.issue-1/demo-2015-0003/demo-2015-0003.xml?format=INT
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joe, Harry, 1990. "Families of min-stable multivariate exponential and multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 9(1), pages 75-81, January.
    2. F. Ballani & M. Schlather, 2011. "A construction principle for multivariate extreme value distributions," Biometrika, Biometrika Trust, vol. 98(3), pages 633-645.
    3. Jiménez, Javier Rojo & Villa-Diharce, Enrique & Flores, Miguel, 2001. "Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 159-191, February.
    4. Anne-Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59.
    5. François Longin, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    6. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    7. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:3:y:2015:i:1:p:18:n:3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.sciendo.com/services/journals .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.