IDEAS home Printed from
   My bibliography  Save this paper

Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas


  • Damiano Brigo
  • Kyriakos Chourdakis


This paper deals with dependence across marginally exponentially distributed arrival times, such as default times in financial modeling or inter-failure times in reliability theory. We explore the relationship between dependence and the possibility to sample final multivariate survival in a long time-interval as a sequence of iterations of local multivariate survivals along a partition of the total time interval. We find that this is possible under a form of multivariate lack of memory that is linked to a property of the survival times copula. This property defines a "self-chaining-copula", and we show that this coincides with the extreme value copulas characterization. The self-chaining condition is satisfied by the Gumbel-Hougaard copula, a full characterization of self chaining copulas in the Archimedean family, and by the Marshall-Olkin copula. The result has important practical implications for consistent single-step and multi-step simulation of multivariate arrival times in a way that does not destroy dependency through iterations, as happens when inconsistently iterating a Gaussian copula.

Suggested Citation

  • Damiano Brigo & Kyriakos Chourdakis, 2012. "Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas," Papers 1204.2090,, revised Apr 2012.
  • Handle: RePEc:arx:papers:1204.2090

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    2. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    3. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    4. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    5. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 209-238, November.
    6. Wei, Gang & Hu, Taizhong, 2002. "Supermodular dependence ordering on a class of multivariate copulas," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 375-385, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Brigo, Damiano & Mai, Jan-Frederik & Scherer, Matthias, 2016. "Markov multi-variate survival indicators for default simulation as a new characterization of the Marshall–Olkin law," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 60-66.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.2090. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.