IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i1d10.1007_s10182-023-00474-y.html
   My bibliography  Save this article

Clustering of extreme values: estimation and application

Author

Listed:
  • Marta Ferreira

    (Universidade do Minho)

Abstract

The extreme value theory (EVT) encompasses a set of methods that allow inferring about the risk inherent to various phenomena in the scope of economic, financial, actuarial, environmental, hydrological, climatic sciences, as well as various areas of engineering. In many situations the clustering effect of high values may have an impact on the risk of occurrence of extreme phenomena. For example, extreme temperatures that last over time and result in drought situations, the permanence of intense rains leading to floods, stock markets in successive falls and consequent catastrophic losses. The extremal index is a measure of EVT associated with the degree of clustering of extreme values. In many situations, and under certain conditions, it corresponds to the arithmetic inverse of the average size of high-value clusters. The estimation of the extremal index generally entails two sources of uncertainty: the level at which high observations are considered and the identification of clusters. There are several contributions in the literature on the estimation of the extremal index, including methodologies to overcome the aforementioned sources of uncertainty. In this work we will revisit several existing estimators, apply automatic choice methods, both for the threshold and for the clustering parameter, and compare the performance of the methods. We will end with an application to meteorological data.

Suggested Citation

  • Marta Ferreira, 2024. "Clustering of extreme values: estimation and application," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 101-125, March.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00474-y
    DOI: 10.1007/s10182-023-00474-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-023-00474-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-023-00474-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsing, Tailen, 1991. "Estimating the parameters of rare events," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 117-139, February.
    2. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    3. D. Prata Gomes & M. Manuela Neves, 2020. "Extremal index blocks estimator: the threshold and the block size choice," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(13-15), pages 2846-2861, November.
    4. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    5. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    2. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    3. J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.
    4. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    5. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
    6. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    7. Jose Olmo, 2015. "A New Family of Consistent and Asymptotically-Normal Estimators for the Extremal Index," Econometrics, MDPI, vol. 3(3), pages 1-21, August.
    8. John Galbraith & Serguei Zernov, 2009. "Extreme dependence in the NASDAQ and S&P 500 composite indexes," Applied Financial Economics, Taylor & Francis Journals, vol. 19(13), pages 1019-1028.
    9. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    10. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    11. Segers, J.J.J., 2003. "Approximate Distributions of Clusters of Extremes," Other publications TiSEM 443e619d-453d-4a3c-b2f3-5, Tilburg University, School of Economics and Management.
    12. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    13. Shankhajyoti De & Arabin Kumar Dey & Deepak Kumar Gouda, 2022. "Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network," Annals of Data Science, Springer, vol. 9(2), pages 271-284, April.
    14. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    15. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    16. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    17. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    18. Kumar, Satish & Khalfaoui, Rabeh & Tiwari, Aviral Kumar, 2021. "Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries," Resources Policy, Elsevier, vol. 74(C).
    19. Fricke, Christoph & Menkhoff, Lukas, 2014. "Financial conditions, macroeconomic factors and (un)expected bond excess returns," Discussion Papers 35/2014, Deutsche Bundesbank.
    20. Olmo, José, 2005. "Testing the existence of clustering in the extreme values," UC3M Working papers. Economics we051809, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00474-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.