IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v19y2009i13p1019-1028.html
   My bibliography  Save this article

Extreme dependence in the NASDAQ and S&P 500 composite indexes

Author

Listed:
  • John Galbraith
  • Serguei Zernov

Abstract

Dependence among large observations in equity markets is usually examined using second-moment models such as those from the GARCH or SV classes. Such models treat the entire set of returns, and tend to produce similar estimates on different major equity markets, with a sum of estimated GARCH parameters, for example, slightly below one. Using dependence measures from extreme value theory, however, it is possible to characterize dependence among only the largest (or largest negative) financial returns; these alternative characterizations of clustering have important applications in risk management. In this article we compare the NASDAQ and S&P in this way, and implement tests which can be used for the null hypothesis of the same degree of extreme dependence. Although GARCH-type characterizations of second-moment dependence in the two markets produce similar results, the same is not true in the extremes: we find significantly more extreme dependence in the NASDAQ returns. More generally, the study of extreme dependence may reveal contrasts which are obscured when examining the conditional second moment.

Suggested Citation

  • John Galbraith & Serguei Zernov, 2009. "Extreme dependence in the NASDAQ and S&P 500 composite indexes," Applied Financial Economics, Taylor & Francis Journals, vol. 19(13), pages 1019-1028.
  • Handle: RePEc:taf:apfiec:v:19:y:2009:i:13:p:1019-1028
    DOI: 10.1080/09603100802360032
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100802360032
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John W. Galbraith, 2004. "Circuit Breakers and the Tail Index of Equity Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 109-129.
    2. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    3. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," Review of Economic Studies, Oxford University Press, vol. 68(3), pages 633-663.
    4. Hsing, Tailen, 1991. "Estimating the parameters of rare events," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 117-139, February.
    5. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    6. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    7. François M. Longin, 1999. "Optimal margin level in futures markets: Extreme price movements," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 127-152, April.
    8. Jean Diebolt & Dominique Guegan, 1993. "Tail Behaviour of the Stationary Density of General Non-Linear Autoregressive Processes of Order One," Post-Print halshs-00199526, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John G. Galbraith & Serguei Zernov, 2006. "Extreme Dependence In The Nasdaq And S&P Composite Indexes," Departmental Working Papers 2006-14, McGill University, Department of Economics.
    2. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    3. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    4. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    5. Cotter, John, 2004. "Modelling extreme financial returns of global equity markets," MPRA Paper 3532, University Library of Munich, Germany.
    6. Raj Aggarwal & Min Qi, 2009. "Distribution of extreme changes in Asian currencies: tail index estimates and value-at-risk calculations," Applied Financial Economics, Taylor & Francis Journals, vol. 19(13), pages 1083-1102.
    7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    8. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    9. Shi, Wei & Irwin, Scott H., 2006. "What Happens when Peter can't Pay Paul: Risk Management at Futures Exchange Clearinghouses," 2006 Annual meeting, July 23-26, Long Beach, CA 21087, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Hamed Tabasi & Vahidreza Yousefi & Jolanta Tamošaitienė & Foroogh Ghasemi, 2019. "Estimating Conditional Value at Risk in the Tehran Stock Exchange Based on the Extreme Value Theory Using GARCH Models," Administrative Sciences, MDPI, Open Access Journal, vol. 9(2), pages 1-17, May.
    11. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.
    12. Alexander, Carol & Kaeck, Andreas & Sumawong, Anannit, 2019. "A parsimonious parametric model for generating margin requirements for futures," European Journal of Operational Research, Elsevier, vol. 273(1), pages 31-43.
    13. Wagner, Niklas, 2005. "Autoregressive conditional tail behavior and results on Government bond yield spreads," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 247-261.
    14. Cotter, John & Dowd, Kevin, 2010. "Intra-day seasonality in foreign exchange market transactions," International Review of Economics & Finance, Elsevier, vol. 19(2), pages 287-294, April.
    15. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    16. Riedel, Christoph & Wagner, Niklas, 2015. "Is risk higher during non-trading periods? The risk trade-off for intraday versus overnight market returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 53-64.
    17. Straetmans, Stefan & Candelon, Bertrand, 2013. "Long-term asset tail risks in developed and emerging markets," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 1832-1844.
    18. John W. Galbraith, 2004. "Circuit Breakers and the Tail Index of Equity Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 109-129.
    19. Chen, Yan & Yu, Wenqiang, 2020. "Setting the margins of Hang Seng Index Futures on different positions using an APARCH-GPD Model based on extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    20. Blazsek, Szabolcs & Escribano, Álvaro & Ayala, Astrid, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:19:y:2009:i:13:p:1019-1028. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.