IDEAS home Printed from
   My bibliography  Save this paper

Extreme Dependence In The Nasdaq And S&P Composite Indexes


  • John G. Galbraith


  • Serguei Zernov



Dependence among large observations in equity markets is usually examined using second-moment models such as those from the GARCH or SV classes. Such models treat the entire set of returns, and tend to produce very similar estimates on the major equity markets, with a sum of estimated GARCH parameters, for example, slightly below one. Using dependence measures from extreme value theory, however, it is possible to characterie dependence among only the largest (or largest negative) financial returns; these alternative characterizations of clustering have important applications in risk management. In this paper we compare the NASDAQ and degree of extreme dependence. Although GARCH-type characterizations of second-moment dependence in the two markets produce similar results, the same is not true in the extremes: we find significantly more extreme dependence in the NASDAQ returns. More generally, the study of extreme dependence may reveal contrasts which are obscured when examining the conditional second moment.

Suggested Citation

  • John G. Galbraith & Serguei Zernov, 2006. "Extreme Dependence In The Nasdaq And S&P Composite Indexes," Departmental Working Papers 2006-14, McGill University, Department of Economics.
  • Handle: RePEc:mcl:mclwop:2006-14

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Martins-Filho Carlos & Yao Feng, 2006. "Estimation of Value-at-Risk and Expected Shortfall based on Nonlinear Models of Return Dynamics and Extreme Value Theory," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-43, May.
    2. John W. Galbraith, 2004. "Circuit Breakers and the Tail Index of Equity Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 109-129.
    3. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    4. M. E. Robinson & J. A. Tawn, 2000. "Extremal analysis of processes sampled at different frequencies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 117-135.
    5. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    6. Anthony W. Ledford & Jonathan A. Tawn, 2003. "Diagnostics for dependence within time series extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 521-543.
    7. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," Review of Economic Studies, Oxford University Press, vol. 68(3), pages 633-663.
    8. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    9. Laurini Fabrizio, 2004. "Clusters of Extreme Observations and Extremal Index Estimate in GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-23, May.
    10. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    11. Fran├žois Longin, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    12. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    13. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    14. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcl:mclwop:2006-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shama Rangwala). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.