Estimation of Value-at-Risk and Expected Shortfall based on Nonlinear Models of Return Dynamics and Extreme Value Theory
Author
Abstract
Suggested Citation
DOI: 10.2202/1558-3708.1304
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000.
"Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management,"
Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
- Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-081, New York University, Leonard N. Stern School of Business-.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- David Mandy & Carlos Martins-Filho, 2001.
"Optimal Iv Estimation Of Systems With Stochastic Regressors And Var Disturbances With Applications To Dynamic Systems,"
Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 485-505.
- Martins Filho, Carlos & Mandy, David M., 1998. "Optimal IV estimation of systems with stochastic regressors and var disturbances with applications to dynamic systems," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 333, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
- Carroll, Raymond J. & Härdle, Wolfgang & Mammen, Enno, 2002. "Estimation In An Additive Model When The Components Are Linked Parametrically," Econometric Theory, Cambridge University Press, vol. 18(4), pages 886-912, August.
- Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(4), pages 985-991, August.
- Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
- Elena Andreou & Nikitas Pittis & Aris Spanos, 2001. "On Modelling Speculative Prices: The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 15(2), pages 187-220, April.
- Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
- Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
- Tauchen, George, 2001. "Notes on financial econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 57-64, January.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
- Escanciano, J. Carlos & Olmo, Jose, 2010.
"Backtesting Parametric Value-at-Risk With Estimation Risk,"
Journal of Business & Economic Statistics,
American Statistical Association, vol. 28(1), pages 36-51.
- Juan Carlos Escanciano & Jose Olmo, 2007. "Backtesting Parametric Value-at-Risk with Estimation Risk," Caepr Working Papers 2007-005_updated, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
- Martins-Filho, Carlos & Yao, Feng, 2009. "Nonparametric regression estimation with general parametric error covariance," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 309-333, March.
- d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
- Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
- Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018.
"Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory,"
Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
- Carlos Martins-Filho & Feng Yao & Maximo Torero, 2012. "Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory," Working Papers 13-05, Department of Economics, West Virginia University.
- Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
- Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
- Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
- Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
- Juan Carlos Escanciano & Jose Olmo, 2007.
"Backtesting Parametric Value-at-Risk with Estimation Risk Abstract: One of the implications of the creation of Basel Committee on Banking Supervision was the implementation of Value-at-Risk (VaR) as t,"
Caepr Working Papers
2007-005, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
- Juan Carlos Escanciano & Jose Olmo, 2007. "Backtesting Parametric Value-at-Risk with Estimation Risk," Caepr Working Papers 2007-005_updated, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington, revised Sep 2008.
- John G. Galbraith & Serguei Zernov, 2006. "Extreme Dependence In The Nasdaq And S&P Composite Indexes," Departmental Working Papers 2006-14, McGill University, Department of Economics.
- Escanciano, J. Carlos & Olmo, Jose, 2010.
"Backtesting Parametric Value-at-Risk With Estimation Risk,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
- Juan Carlos Escanciano & Jose Olmo, 2007. "Backtesting Parametric Value-at-Risk with Estimation Risk," CAEPR Working Papers 2007-005, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington, revised Sep 2008.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
- Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
- Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
- Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
- Cotter, John, 2007.
"Varying the VaR for unconditional and conditional environments,"
Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
- Cotter, John, 2004. "Varying the VaR for Unconditional and Conditional Environments," MPRA Paper 3483, University Library of Munich, Germany.
- John Cotter, 2011. "Varying the VaR for Unconditional and Conditional Environments," Papers 1103.5649, arXiv.org.
- John Cotter, 2011. "Varying the VaR for Unconditional and Conditional Environments," Working Papers 200419, Geary Institute, University College Dublin.
- Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
- Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
- Vêlayoudom Marimoutou & Bechir Raggad & Abdelwahed Trabelsi, 2006. "Extreme Value Theory and Value at Risk : Application to Oil Market," Working Papers halshs-00410746, HAL.
- Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
- Turan G. Bali, 2007. "An Extreme Value Approach to Estimating Interest-Rate Volatility: Pricing Implications for Interest-Rate Options," Management Science, INFORMS, vol. 53(2), pages 323-339, February.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
- Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007.
"Practical Volatility and Correlation Modeling for Financial Market Risk Management,"
NBER Chapters, in: The Risks of Financial Institutions, pages 513-544,
National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Working Papers 11069, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Practical volatility and correlation modeling for financial market risk management," CFS Working Paper Series 2005/02, Center for Financial Studies (CFS).
- Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018.
"Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory,"
Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
- Carlos Martins-Filho & Feng Yao & Maximo Torero, 2012. "Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory," Working Papers 13-05, Department of Economics, West Virginia University.
- Pawel Siarka, 2012. "Implementation of the Stress Test Methods in the Retail Portfolio," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 2(6), pages 1-2.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:10:y:2006:i:2:n:4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.