IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Backtesting Parametric Value-at-Risk With Estimation Risk

  • Escanciano, J. Carlos
  • Olmo, Jose

One of the implications of the creation of Basel Committee on Banking Supervision was the implementation of Value-at-Risk (VaR) as the standard tool for measuring market risk. Since then, the capital requirements of commercial banks with trading activities are based on VaR estimates. Therefore, appropriately constructed tests for assessing the out-of-sample forecast accuracy of the VaR model (backtesting procedures) have become of crucial practical importance. In this paper we show that the use of the standard unconditional and independence backtesting procedures to assess VaR models in out-of-sample composite environments can be misleading. These tests do not consider the impact of estimation risk and therefore may use wrong critical values to assess market risk. The purpose of this paper is to quantify such estimation risk in a very general class of dynamic parametric VaR models and to correct standard backtesting procedures to provide valid inference in out-of-sample analyses. A Monte Carlo study illustrates our theoretical findings in finite-samples and shows that our corrected unconditional test can provide more accurately sized and more powerful tests than the uncorrected one. Finally, an application to S&P500 Index shows the importance of this correction and its impact on capital requirements as imposed by Basel Accord.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2009.07063
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 28 (2010)
Issue (Month): 1 ()
Pages: 36-51

as
in new window

Handle: RePEc:bes:jnlbes:v:28:i:1:y:2010:p:36-51
Contact details of provider: Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information: Web: http://www.amstat.org/publications/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
  2. repec:cup:cbooks:9780521496032 is not listed on IDEAS
  3. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-69, July.
  4. Escanciano, J. C. & Olmo, J., 2007. "Estimation risk effects on backtesting for parametric value-at-risk models," Working Papers 07/11, Department of Economics, City University London.
  5. Steven N. Durlauf, 1992. "Spectral Based Testing of the Martingale Hypothesis," NBER Technical Working Papers 0090, National Bureau of Economic Research, Inc.
  6. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
  7. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
  8. Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
  9. Oliver Linton & Yoon-Jae Whang, 2004. "A Quantilogram Approach to Evaluating Directional Predictability," Cowles Foundation Discussion Papers 1454, Cowles Foundation for Research in Economics, Yale University.
  10. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
  11. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  12. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
  13. Delgado, Miguel A. & Carlos Escanciano, J., 2007. "Nonparametric tests for conditional symmetry in dynamic models," Journal of Econometrics, Elsevier, vol. 141(2), pages 652-682, December.
  14. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
  15. Joan Jasiak & C. Gourieroux, 2006. "Dynamic Quantile Models," Working Papers 2006_4, York University, Department of Economics.
  16. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355, April.
  17. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, 06.
  18. Martins-Filho Carlos & Yao Feng, 2006. "Estimation of Value-at-Risk and Expected Shortfall based on Nonlinear Models of Return Dynamics and Extreme Value Theory," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-43, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:28:i:1:y:2010:p:36-51. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.