IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v79y1997i2p171-175.html
   My bibliography  Save this article

Estimating The Density Tail Index For Financial Time Series

Author

Listed:
  • Phillip Kearns
  • Adrian Pagan

Abstract

The tail index of a density has been widely used as an indicator of the probability of getting a large deviation in a random variable. Most of the theory underlying popular estimators of it assume that the data are independently and identically distributed (i.i.d.). However, many recent applications of the estimator have been to financial data, and such data tend to exhibit long - range dependence. We show, via Monte Carlo simulations, that conventional measures of the precision of the estimator, which are based on the i.i.d. assumption, are greatly exaggerated when such dependent data are used. This conclusion also has implications for estimates of the likelihood of getting some extreme values, and we illustrate the changed conclusions one would get using equity return data. © 1997 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology

Suggested Citation

  • Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
  • Handle: RePEc:tpr:restat:v:79:y:1997:i:2:p:171-175
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/003465397556755
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:79:y:1997:i:2:p:171-175. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites). General contact details of provider: http://mitpress.mit.edu/journals/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.