IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2010cf757.html
   My bibliography  Save this paper

Bayesian Estimation and Particle Filter for Max-Stable Processes

Author

Listed:
  • Tsuyoshi Kunihama

    (Graduate School of Economics, University of Tokyo)

  • Yasuhiro Omori

    (Faculty of Economics, University of Tokyo)

  • Zhengjun Zhang

    (Department of Statistics, University of Wisconsin Madison)

Abstract

Extreme values are often correlated over time, for example, in a financial time series, and these values carry various risks. Max-stable processes such as maxima of moving maxima (M3) processes have been recently considered in the literature to describe timedependent dynamics, which have been difficult to estimate. This paper first proposes a feasible and efficient Bayesian estimation method for nonlinear and non-Gaussian state space models based on these processes and describes a Markov chain Monte Carlo algorithm where the sampling efficiency is improved by the normal mixture sampler. Furthermore, a unique particle filter that adapts to extreme observations is proposed and shown to be highly accurate in comparison with other well-known filters. Our proposed algorithms were applied to daily minima of high-frequency stock return data, and a model comparison was conducted using marginal likelihoods to investigate the time-dependent dynamics in extreme stock returns for financial risk management.

Suggested Citation

  • Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2010cf757
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2010/2010cf757.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    2. Hall, Peter & Peng, Liang & Yao, Qiwei, 2002. "Moving-maximum models for extrema of time series," LSE Research Online Documents on Economics 6084, London School of Economics and Political Science, LSE Library.
    3. Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
    4. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    5. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    7. A. Martins & H. Ferreira, 2005. "The multivariate extremal index and the dependence structure of a multivariate extreme value distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 433-448, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2010cf757. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.