IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v34y2010i1p24-32.html
   My bibliography  Save this article

Pricing catastrophe options with stochastic claim arrival intensity in claim time

Author

Listed:
  • Chang, Carolyn W.
  • Chang, Jack S.K.
  • Lu, WeLi

Abstract

We model claim arrival and loss uncertainties jointly in a doubly-binomial framework to price an Asian-style catastrophe (CAT) option with a non-traded underlying loss index using the no-arbitrage martingale pricing methodology. We span these uncertainties by benchmarking to the shadow price of a one-claim bond and the premium of a reinsurance contract. We implement a stochastic time change from calendar time to claim time to more efficiently price the CAT option as a random sum - a binomial sum of claim time binomial Asian option prices. This choice of the operational time dimension allows us to incorporate different patterns of catastrophe arrivals by adjusting the claim arrival probability. We demonstrate this versatility by incorporating a mean-reverting Ornstein-Uhlenbeck intensity arrival process. Simulation results verify our model predictions and demonstrate how the claim arrival probability varies with the expected claim arrival intensity.

Suggested Citation

  • Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
  • Handle: RePEc:eee:jbfina:v:34:y:2010:i:1:p:24-32
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(09)00150-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    2. repec:fth:geneec:99.01 is not listed on IDEAS
    3. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    4. Rustam Ibragimov & Johan Walden, 2006. "The Limits of Diversification When Losses May Be Large," Harvard Institute of Economic Research Working Papers 2104, Harvard - Institute of Economic Research.
    5. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
    6. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    7. Helyette Geman, 2005. "From Measure Changes to Time Changes in Asset Pricing," Post-Print halshs-00144296, HAL.
    8. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    9. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
    10. repec:dau:papers:123456789/1388 is not listed on IDEAS
    11. Knut Aase, 1999. "An Equilibrium Model of Catastrophe Insurance Futures and Spreads," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 24(1), pages 69-96, June.
    12. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 93-115, March.
    13. Charles Levi, & Partrat, Christian, 1991. "Statistical Analysis of Natural Events in the United States," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 253-276, November.
    14. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    15. Cummins, J. David & Lalonde, David & Phillips, Richard D., 2004. "The basis risk of catastrophic-loss index securities," Journal of Financial Economics, Elsevier, vol. 71(1), pages 77-111, January.
    16. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    17. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    18. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    19. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    20. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    21. Froot, Kenneth A. & O'Connell, Paul G.J., 2008. "On the pricing of intermediated risks: Theory and application to catastrophe reinsurance," Journal of Banking & Finance, Elsevier, vol. 32(1), pages 69-85, January.
    22. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    23. Gerber, Hans U., 1984. "Error bounds for the compound poisson approximation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 191-194, July.
    24. Robert E. Hoyt & Kathleen A. McCullough, 1999. "Catastrophe Insurance Options: Are They Zero-Beta Assets?," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 147-163.
    25. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    26. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    27. Dietmar P. J. Leisen, "undated". "The Random-Time Binomial Model," Computing in Economics and Finance 1997 82, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    2. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    3. Beer, Simone & Braun, Alexander, 2022. "Market-consistent valuation of natural catastrophe risk," Journal of Banking & Finance, Elsevier, vol. 134(C).
    4. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    5. Stylianos Perrakis & Ali Boloorforoosh, 2018. "Catastrophe futures and reinsurance contracts: An incomplete markets approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 104-128, January.
    6. Han-Bin KANG & Hsuling CHANG & Tsangyao CHANG, 2022. "Catastrophe Reinsurance Pricing -Modification of Dynamic Asset-Liability Management," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-20, December.
    7. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    8. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    9. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    10. Li, Junye, 2011. "Volatility components, leverage effects, and the return-volatility relations," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1530-1540, June.
    11. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    12. Denis-Alexandre Trottier & Van Son Lai & Anne-Sophie Charest, 2017. "CAT Bond Spreads Via HARA Utility and Nonparametric Tests," Working Papers 2017-002, Department of Research, Ipag Business School.
    13. Yan, Tingjin & Park, Kyunghyun & Wong, Hoi Ying, 2022. "Irreversible reinsurance: A singular control approach," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 326-348.
    14. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    15. Carolyn W. Chang & Jack S.K. Chang, 2017. "Subordinated Binomial Option Pricing with Stochastic Arrival Intensity and Untraded Underlying Asset," Accounting and Finance Research, Sciedu Press, vol. 6(2), pages 190-190, May.
    16. Lo, Chien-Ling & Lee, Jin-Ping & Yu, Min-Teh, 2013. "Valuation of insurers’ contingent capital with counterparty risk and price endogeneity," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5025-5035.
    17. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
    2. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    3. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    4. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    5. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    6. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    7. Stylianos Perrakis & Ali Boloorforoosh, 2018. "Catastrophe futures and reinsurance contracts: An incomplete markets approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 104-128, January.
    8. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    9. Carolyn W. Chang & Jack S. K. Chang, 2017. "An Integrated Approach to Pricing Catastrophe Reinsurance," Risks, MDPI, vol. 5(3), pages 1-12, September.
    10. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    12. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    13. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Sanctions and the Russian stock market," Research in International Business and Finance, Elsevier, vol. 40(C), pages 150-162.
    14. Rustam Ibragimov & Johan Walden, 2011. "Value at risk and efficiency under dependence and heavy-tailedness: models with common shocks," Annals of Finance, Springer, vol. 7(3), pages 285-318, August.
    15. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    16. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    17. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    18. Chirok Han & Jin Seo Cho & Peter C. B. Phillips, 2011. "Infinite Density at the Median and the Typical Shape of Stock Return Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 282-294, April.
    19. Chollete, Loran & de la Pena , Victor & Lu, Ching-Chih, 2009. "International Diversification: An Extreme Value Approach," UiS Working Papers in Economics and Finance 2009/26, University of Stavanger.
    20. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Heavy tails and asymmetry of returns in the Russian stock market," Emerging Markets Review, Elsevier, vol. 32(C), pages 200-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:1:p:24-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.