IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Pricing catastrophe options with stochastic claim arrival intensity in claim time

  • Chang, Carolyn W.
  • Chang, Jack S.K.
  • Lu, WeLi
Registered author(s):

    We model claim arrival and loss uncertainties jointly in a doubly-binomial framework to price an Asian-style catastrophe (CAT) option with a non-traded underlying loss index using the no-arbitrage martingale pricing methodology. We span these uncertainties by benchmarking to the shadow price of a one-claim bond and the premium of a reinsurance contract. We implement a stochastic time change from calendar time to claim time to more efficiently price the CAT option as a random sum - a binomial sum of claim time binomial Asian option prices. This choice of the operational time dimension allows us to incorporate different patterns of catastrophe arrivals by adjusting the claim arrival probability. We demonstrate this versatility by incorporating a mean-reverting Ornstein-Uhlenbeck intensity arrival process. Simulation results verify our model predictions and demonstrate how the claim arrival probability varies with the expected claim arrival intensity.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VCY-4WMDHJK-2/2/128579fa53366968a793210bfae262bb
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Banking & Finance.

    Volume (Year): 34 (2010)
    Issue (Month): 1 (January)
    Pages: 24-32

    as
    in new window

    Handle: RePEc:eee:jbfina:v:34:y:2010:i:1:p:24-32
    Contact details of provider: Web page: http://www.elsevier.com/locate/jbf

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 93-115, March.
    2. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
    3. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    4. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    5. Henri Louberge & Evis Kellezi & Manfred Gilli, 1999. "Using Catastrophe-Linked Securities to Diversity Insurance Risk: A Financial Analysis of Cat Bonds," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 125-146.
    6. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    7. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    9. Georges Hübner & Jean-Philippe Peters, 2008. "Practical methods for measuring and managing operational risk in the financial sector: a clinical study," ULB Institutional Repository 2013/14158, ULB -- Universite Libre de Bruxelles.
    10. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    11. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    12. Rustam Ibragimov & Johan Walden, 2006. "The Limits of Diversification When Losses May Be Large," Harvard Institute of Economic Research Working Papers 2104, Harvard - Institute of Economic Research.
    13. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    14. J. David Cummins & David Lalonde & Richard D. Phillips, 2000. "The Basis Risk of Catastrophic-Loss Index Securities," Center for Financial Institutions Working Papers 00-22, Wharton School Center for Financial Institutions, University of Pennsylvania.
    15. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    16. Geman, Hélyette, 2005. "From Measure Changes to Time Changes in Asset Pricing," Economics Papers from University Paris Dauphine 123456789/1388, Paris Dauphine University.
    17. Robert E. Hoyt & Kathleen A. McCullough, 1999. "Catastrophe Insurance Options: Are They Zero-Beta Assets?," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 147-163.
    18. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
    19. Gerber, Hans U., 1984. "Error bounds for the compound poisson approximation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 191-194, July.
    20. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
    21. Kenneth A. Froot & Paul G.J. O'Connell, . "On the Pricing of Intermediated Risks: Theory and Application to Catastrophe Reinsurance," Center for Financial Institutions Working Papers 97-24, Wharton School Center for Financial Institutions, University of Pennsylvania.
    22. Knut Aase, 1999. "An Equilibrium Model of Catastrophe Insurance Futures and Spreads," The Geneva Risk and Insurance Review, Palgrave Macmillan, vol. 24(1), pages 69-96, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:1:p:24-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.