IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p422-430.html
   My bibliography  Save this article

Pricing catastrophe options in discrete operational time

Author

Listed:
  • Chang, Carolyn W.
  • Chang, Jack S.K.
  • Lu, WeiLi

Abstract

We employ a doubly-binomial process as in Gerber [Gerber, H.U., 1988. Mathematical fun with the compound binomial process. ASTIN Bull. 18, 161-168] to discretize and generalize the continuous "randomized operational time" model of Chang et al. ([Chang, C.W., Chang, J.S.K., Yu, M.T., 1996. Pricing catastrophe insurance futures call spreads: A randomized operational time approach. J. Risk Insurance 63, 599-616] and CCY hereafter) from a complete-market continuous-time setting to an incomplete-market discrete-time setting, so as to price a richer set of catastrophe (CAT) options. For futures options, we derive the equivalent martingale probability measures by benchmarking to the shadow price of a bond to span arrival uncertainty, and the underlying futures price to span price uncertainty. With a time change from calendar time to the operational transaction-time dimension, we derive CCY as a limiting case under risk-neutrality when both calendar-time and transaction-time intervals shrink to zero. For a cash option with non-traded underlying loss index, we benchmark to the market reinsurance premiums to span claim uncertainty, and with a time change to claim time, we derive the cash option price as a binomial sum of claim-time binomial Asian option prices under the martingale measures.

Suggested Citation

  • Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:422-430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00104-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    2. repec:fth:geneec:99.01 is not listed on IDEAS
    3. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
    4. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    5. Helyette Geman, 2005. "From Measure Changes to Time Changes in Asset Pricing," Post-Print halshs-00144296, HAL.
    6. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    7. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
    8. repec:dau:papers:123456789/1388 is not listed on IDEAS
    9. Gerber, Hans U., 1984. "Error bounds for the compound poisson approximation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 191-194, July.
    10. Knut Aase, 1999. "An Equilibrium Model of Catastrophe Insurance Futures and Spreads," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 24(1), pages 69-96, June.
    11. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 93-115, March.
    12. Charles Levi, & Partrat, Christian, 1991. "Statistical Analysis of Natural Events in the United States," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 253-276, November.
    13. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    14. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    15. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. Dietmar P. J. Leisen, "undated". "The Random-Time Binomial Model," Computing in Economics and Finance 1997 82, Society for Computational Economics.
    18. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    2. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    3. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    4. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    5. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    6. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
    7. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
    2. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    3. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    5. Perrakis, Stylianos & Boloorforoosh, Ali, 2013. "Valuing catastrophe derivatives under limited diversification: A stochastic dominance approach," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3157-3168.
    6. Stylianos Perrakis & Ali Boloorforoosh, 2018. "Catastrophe futures and reinsurance contracts: An incomplete markets approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 104-128, January.
    7. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    8. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    9. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    10. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    11. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    12. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    13. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    14. Klößner, Stefan & Becker, Martin & Friedmann, Ralph, 2012. "Modeling and measuring intraday overreaction of stock prices," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1152-1163.
    15. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    16. Luca Barzanti & Corrado Corradi & Martina Nardon, 2006. "On the efficient application of the repeated Richardson extrapolation technique to option pricing," Working Papers 147, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    17. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    18. Anthony Murphy & Marwan Izzeldin, 2010. "Recovering the moments of information flow and the normality of asset returns," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 761-769.
    19. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:422-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.