IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p422-430.html
   My bibliography  Save this article

Pricing catastrophe options in discrete operational time

Author

Listed:
  • Chang, Carolyn W.
  • Chang, Jack S.K.
  • Lu, WeiLi

Abstract

We employ a doubly-binomial process as in Gerber [Gerber, H.U., 1988. Mathematical fun with the compound binomial process. ASTIN Bull. 18, 161-168] to discretize and generalize the continuous "randomized operational time" model of Chang et al. ([Chang, C.W., Chang, J.S.K., Yu, M.T., 1996. Pricing catastrophe insurance futures call spreads: A randomized operational time approach. J. Risk Insurance 63, 599-616] and CCY hereafter) from a complete-market continuous-time setting to an incomplete-market discrete-time setting, so as to price a richer set of catastrophe (CAT) options. For futures options, we derive the equivalent martingale probability measures by benchmarking to the shadow price of a bond to span arrival uncertainty, and the underlying futures price to span price uncertainty. With a time change from calendar time to the operational transaction-time dimension, we derive CCY as a limiting case under risk-neutrality when both calendar-time and transaction-time intervals shrink to zero. For a cash option with non-traded underlying loss index, we benchmark to the market reinsurance premiums to span claim uncertainty, and with a time change to claim time, we derive the cash option price as a binomial sum of claim-time binomial Asian option prices under the martingale measures.

Suggested Citation

  • Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:422-430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00104-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U., 1984. "Error bounds for the compound poisson approximation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 191-194, July.
    2. Knut Aase, 1999. "An Equilibrium Model of Catastrophe Insurance Futures and Spreads," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 24(1), pages 69-96, June.
    3. Bakshi, Gurdip & Madan, Dilip, 2002. "Average Rate Claims with Emphasis on Catastrophe Loss Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 93-115, March.
    4. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    5. Charles Levi, & Partrat, Christian, 1991. "Statistical Analysis of Natural Events in the United States," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 21(2), pages 253-276, November.
    6. repec:fth:geneec:99.01 is not listed on IDEAS
    7. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    8. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.
    9. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    10. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 18(2), pages 161-168, November.
    11. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    14. Henri Louberge & Evis Kellezi & Manfred Gilli, 1999. "Using Catastrophe-Linked Securities to Diversity Insurance Risk: A Financial Analysis of Cat Bonds," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 22(2), pages 125-146.
    15. repec:dau:papers:123456789/1388 is not listed on IDEAS
    16. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    2. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    3. repec:eee:phsmap:v:503:y:2018:i:c:p:632-639 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:422-430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.