IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the efficient application of the repeated Richardson extrapolation technique to option pricing

  • Luca Barzanti

    ()

    (University of Bologna)

  • Corrado Corradi

    ()

    (University of Bologna)

  • Martina Nardon

    ()

    (Department of Applied Mathematics, University of Venice)

Richardson extrapolation (RE) is a commonly used technique in financial applications for accelerating the convergence of numerical methods. Particularly in option pricing, it is possible to refine the results of several approaches by applying RE, in order to avoid the difficulties of employing slowly converging schemes. But the effectiveness of such a technique is fully achieved when its repeated version (RRE) is applied. Nevertheless, its application in financial literature is pretty rare. This is probably due to the necessity to pay special attention to the numerical aspects of its implementation, such as the choice of both the sequence of the stepsizes and the order of the method. In this contribution, we consider several numerical schemes for the valuation of American options and investigate the possibility of an appropriate application of RRE. As a result, we find that, in the analyzed approaches in which the convergence is monotonic, RRE can be used as an effective tool for improving significantly the accuracy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://virgo.unive.it/wpideas/storage/2006wp147.pdf
Download Restriction: no

Paper provided by Department of Applied Mathematics, Università Ca' Foscari Venezia in its series Working Papers with number 147.

as
in new window

Length: 19 pages
Date of creation: Nov 2006
Date of revision:
Handle: RePEc:vnm:wpaper:147
Contact details of provider: Postal: Dorsoduro, 3825/E, 30123 Venezia
Phone: ++39 041 2346910-6911
Fax: ++ 39 041 5221756
Web page: http://www.dma.unive.it/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Steve Heston & Guofu Zhou, 2000. "On the Rate of Convergence of Discrete-Time Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 53-75.
  2. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
  3. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
  4. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-46.
  5. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-24, December.
  6. Bunch, David S & Johnson, Herb, 1992. " A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-16, June.
  7. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
  8. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(02), pages 153-164, June.
  9. Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:147. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco LiCalzi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.