IDEAS home Printed from https://ideas.repec.org/p/vnm/wpaper/147.html
   My bibliography  Save this paper

On the efficient application of the repeated Richardson extrapolation technique to option pricing

Author

Listed:
  • Luca Barzanti

    () (University of Bologna)

  • Corrado Corradi

    () (University of Bologna)

  • Martina Nardon

    () (Department of Applied Mathematics, University of Venice)

Abstract

Richardson extrapolation (RE) is a commonly used technique in financial applications for accelerating the convergence of numerical methods. Particularly in option pricing, it is possible to refine the results of several approaches by applying RE, in order to avoid the difficulties of employing slowly converging schemes. But the effectiveness of such a technique is fully achieved when its repeated version (RRE) is applied. Nevertheless, its application in financial literature is pretty rare. This is probably due to the necessity to pay special attention to the numerical aspects of its implementation, such as the choice of both the sequence of the stepsizes and the order of the method. In this contribution, we consider several numerical schemes for the valuation of American options and investigate the possibility of an appropriate application of RRE. As a result, we find that, in the analyzed approaches in which the convergence is monotonic, RRE can be used as an effective tool for improving significantly the accuracy.

Suggested Citation

  • Luca Barzanti & Corrado Corradi & Martina Nardon, 2006. "On the efficient application of the repeated Richardson extrapolation technique to option pricing," Working Papers 147, Department of Applied Mathematics, Universit√† Ca' Foscari Venezia.
  • Handle: RePEc:vnm:wpaper:147
    as

    Download full text from publisher

    File URL: http://virgo.unive.it/wpideas/storage/2006wp147.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(02), pages 153-164, June.
    2. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    3. Steve Heston & Guofu Zhou, 2000. "On the Rate of Convergence of Discrete-Time Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 53-75.
    4. Bunch, David S & Johnson, Herb, 1992. " A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-816, June.
    5. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    6. Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
    7. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    8. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    9. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Richardson extrapolation; repeated Richardson extrapolation; American options; randomization technique; flexible binomial method;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco LiCalzi). General contact details of provider: http://edirc.repec.org/data/dmvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.