IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v13y2010i1p75-99.html
   My bibliography  Save this article

Analytical approximations for the critical stock prices of American options: a performance comparison

Author

Listed:
  • Minqiang Li

    ()

Abstract

Many e±cient and accurate analytical methods for pricing American options now exist. However, while they can produce accurate option prices, they often do not give accurate critical stock prices. In this paper, we propose two new analytical approximations for American options based on the quadratic approximation. We compare our methods with existing analytical methods including the quadratic approximations in Barone-Adesi and Whaley (1987) and Barone-Adesi and Elliott (1991), the lower bound approximation in Broadie and Detemple (1996), the tangent approximation in Bunch and Johnson (2000), the Laplace inversion method in Zhu (2006b), and the interpolation method in Li (2008). Both of our methods give much more accurate critical stock prices than all the existing methods above.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
  • Handle: RePEc:kap:revdev:v:13:y:2010:i:1:p:75-99
    DOI: 10.1007/s11147-009-9044-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-009-9044-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
    2. J. D. Evans & R. Kuske & Joseph B. Keller, 2002. "American options on assets with dividends near expiry," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 219-237.
    3. Bjerksund, Petter & Stensland, Gunnar, 1993. "Closed-form approximation of American options," Scandinavian Journal of Management, Elsevier, vol. 9(Supplemen), pages 87-99.
    4. Johnson, H. E., 1983. "An Analytic Approximation for the American Put Price," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 141-148, March.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    6. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    7. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    8. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    9. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    10. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    11. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    12. Sullivan, Michael A, 2000. "Valuing American Put Options Using Gaussian Quadrature," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 75-94.
    13. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
    14. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103 World Scientific Publishing Co. Pte. Ltd..
    15. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, Springer, vol. 7(3), pages 361-383.
    16. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    17. Khaliq, A.Q.M. & Voss, D.A. & Kazmi, S.H.K., 2006. "A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 489-502, February.
    18. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    19. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    20. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
    21. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.

    More about this item

    Keywords

    American option; Analytical approximation; Critical stock price; C02; C63; G13;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:13:y:2010:i:1:p:75-99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.