IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i5p725-737.html
   My bibliography  Save this article

A closed-form solution to American options under general diffusion processes

Author

Listed:
  • Jing Zhao
  • Hoi Ying Wong

Abstract

This paper investigates American option pricing under general diffusion processes. Specifically, the underlying asset price is assumed to follow a diffusion process in which both the dividend yield and volatility are functions of time and the underlying asset price. Using the generalized homotopy analysis method, the determination of the early exercise boundary is separated from the valuation procedure of American options. Then, an exact and explicit solution for American options on a dividend-paying stock is derived as a Maclaurin series. In addition, the corresponding optimal early exercise boundary and the Greeks are obtained in closed-form solutions. A nonlinear sequence transformation, the Pad� technique, is used to effectively accelerate the convergence of the partial sums of the infinite series. As the homotopy constructed in this paper is based on a generalized deformation with a shape parameter and kernel function, the error of the homotopic approximation could be reduced further for a fixed order. Numerical examples demonstrate the validity, effectiveness, and flexibility of the proposed approach.

Suggested Citation

  • Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:5:p:725-737
    DOI: 10.1080/14697680903193405
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680903193405
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903193405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999. "Pricing And Hedging American Options: A Recursive Integration Method," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239, World Scientific Publishing Co. Pte. Ltd..
    3. Xinfu Chen & John Chadam & Lishang Jiang & Weian Zheng, 2008. "Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 185-197, January.
    4. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    5. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
    6. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    9. Kaushik Amin & Ajay Khanna, 1994. "Convergence Of American Option Values From Discrete‐ To Continuous‐Time Financial Models1," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 289-304, October.
    10. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    11. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    12. Lishang Jiang & Qihong Chen & Lijun Wang & Jin Zhang, 2003. "A new well-posed algorithm to recover implied local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 451-457.
    13. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    14. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    15. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    16. Bo Martin Bibby & Michael SÛrensen, 1996. "A hyperbolic diffusion model for stock prices (*)," Finance and Stochastics, Springer, vol. 1(1), pages 25-41.
    17. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    18. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    19. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    20. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    21. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    22. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takayuki Sakuma & Yuji Yamada, 2014. "Application of Homotopy Analysis Method to Option Pricing Under Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(1), pages 1-14, March.
    2. Xiaotong Lian & Yingda Song, 2021. "Pricing and calibration of the futures options market: A unified approximation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1074-1091, July.
    3. He, Yong & Zhou, Xia & Chen, Peimin & Wang, Xiaoyang, 2022. "An analytical solution for the robust investment-reinsurance strategy with general utilities," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    4. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    5. Ballestra, Luca Vincenzo & Cecere, Liliana, 2015. "Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley," Finance Research Letters, Elsevier, vol. 14(C), pages 45-55.
    6. Song-Ping Zhu & Guiyuan Ma, 2018. "An analytical solution for the HJB equation arising from the Merton problem," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-26, March.
    7. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    8. Bernardo D’Auria & Eduardo García-Portugués & Abel Guada, 2020. "Discounted Optimal Stopping of a Brownian Bridge, with Application to American Options under Pinning," Mathematics, MDPI, vol. 8(7), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    3. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    4. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    5. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    6. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    7. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    8. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    9. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    10. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    11. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    12. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    13. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    14. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
    19. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    20. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:5:p:725-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.