IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v49y2003i9p1210-1228.html
   My bibliography  Save this article

Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium

Author

Listed:
  • Alfredo Ibáñez

    () (Instituto Tecnológico Autónomo de México, Departamento de Administración, Río Hondo No. 1, Col. Tizapán San Ángel, 01000 D.F., México)

Abstract

This paper presents a detailed analysis of the numerical implementation of the American put option decomposition into an equivalent European option plus an early exercise premium (Kim 1990, Jacka 1991, Carr et al. 1992). It subsequently introduces a new algorithm based upon this decomposition and Richardson extrapolation. This new algorithm is based upon (a) the derivation of the correct order for the error term when applying Richardson extrapolation, which is used to control the error of the extrapolated prices, (b) an innovative adjustment of Kim's (1990) discrete-time early exercise premium, so that these premiums monotonically converge and, therefore, it is appropriate to use them in extrapolation, and (c) the optimal exercise frontier can be quickly computed through Newton's method, permitting the efficient implementation of the decomposition formula in practice. Numerical experiments show that this new algorithm is accurate, efficient, easy to implement, and competitive in comparison with other methods. Finally, it can also be applied to other American exotic securities.

Suggested Citation

  • Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
  • Handle: RePEc:inm:ormnsc:v:49:y:2003:i:9:p:1210-1228
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.49.9.1210.16571
    Download Restriction: no

    References listed on IDEAS

    as
    1. Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
    2. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    3. Asbjørn T. Hansen & Peter Løchte Jørgensen, 2000. "Analytical Valuation of American-Style Asian Options," Management Science, INFORMS, vol. 46(8), pages 1116-1136, August.
    4. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    5. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    6. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286.
    7. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    8. Bunch, David S & Johnson, Herb, 1992. " A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-816, June.
    9. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    10. Chandrasekhar Reddy Gukhal, 2001. "Analytical Valuation of American Options on Jump-Diffusion Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 97-115.
    11. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103 World Scientific Publishing Co. Pte. Ltd..
    12. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    13. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    14. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    15. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
    2. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2016. "Early exercise decision in American options with dividends, stochastic volatility and jumps," Papers 1612.03031, arXiv.org.
    3. Chung, San-Lin & Hung, Mao-Wei & Wang, Jr-Yan, 2010. "Tight bounds on American option prices," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 77-89, January.
    4. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:49:y:2003:i:9:p:1210-1228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.