IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v35y2011i4p988-999.html
   My bibliography  Save this article

An FFT-network for Lévy option pricing

Author

Listed:
  • Wong, Hoi Ying
  • Guan, Peiqiu

Abstract

This paper develops a simple network approach to American exotic option valuation under Lévy processes using the fast Fourier transform (FFT). The forward shooting grid (FSG) technique of the lattice approach is then generalized to expand the FFT-network to accommodate path-dependent variables. This network pricing approach is applicable to all Lévy processes for which the characteristic function is readily available. In other words, the log-value of the underlying asset can follow finite-activity or infinite-activity Lévy processes. With the powerful computation of FFT, the proposed network has a negligible additional computational burden compared to the binomial tree approach. The early exercise policy and option values in the continuation region are determined in a way very similar to that of the lattice approach. Numerical examples using American-style barrier, lookback, and Asian options demonstrate that the FFT-network is accurate and efficient.

Suggested Citation

  • Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
  • Handle: RePEc:eee:jbfina:v:35:y:2011:i:4:p:988-999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(10)00346-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung, San-Lin & Hung, Mao-Wei & Wang, Jr-Yan, 2010. "Tight bounds on American option prices," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 77-89, January.
    2. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    3. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(02), pages 153-164, June.
    6. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path-Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51.
    7. Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
    8. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    9. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    11. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    12. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
    13. Hilliard, Jimmy E. & Schwartz, Adam, 2005. "Pricing European and American Derivatives under a Jump-Diffusion Process: A Bivariate Tree Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(03), pages 671-691, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    2. Chung, Shing Fung & Wong, Hoi Ying, 2014. "Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 130-140.
    3. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    4. Kwai S. Leung & Hon Y. Ng & Hoi Y. Wong, 2014. "Stochastic Skew in the Interest Rate Cap Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1146-1169, December.
    5. Kassberger, Stefan & Liebmann, Thomas, 2012. "When are path-dependent payoffs suboptimal?," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1304-1310.
    6. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2014. "Pricing foreign equity options with regime-switching," Economic Modelling, Elsevier, vol. 37(C), pages 296-305.
    7. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Valuing commodity options and futures options with changing economic conditions," Economic Modelling, Elsevier, vol. 51(C), pages 524-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:35:y:2011:i:4:p:988-999. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.