IDEAS home Printed from
   My bibliography  Save this article

When are path-dependent payoffs suboptimal?


  • Kassberger, Stefan
  • Liebmann, Thomas


Generalizing a result by Cox and Leland (2000) and Vanduffel et al. (2009), this note shows that risk-averse investors with fixed planning horizon prefer path-independent payoffs in any financial market if the pricing kernel is a function of the underlying’s price at the end of the planning horizon. Generally, for every payoff which is not a function of the pricing kernel, there is a more attractive alternative that depends solely on the pricing kernel at the end of the planning horizon.

Suggested Citation

  • Kassberger, Stefan & Liebmann, Thomas, 2012. "When are path-dependent payoffs suboptimal?," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1304-1310.
  • Handle: RePEc:eee:jbfina:v:36:y:2012:i:5:p:1304-1310 DOI: 10.1016/j.jbankfin.2011.11.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cox, John C. & Leland, Hayne E., 2000. "On dynamic investment strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1859-1880, October.
    2. Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
    3. Mansuy, Roger & Yor, Marc, 2005. "Harnesses, Lévy bridges and Monsieur Jourdain," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 329-338, February.
    4. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    5. Fajardo, José & Farias, Aquiles, 2010. "Derivative pricing using multivariate affine generalized hyperbolic distributions," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1607-1617, July.
    6. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    7. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fajardo, José & Corcuera, José Manuel & Menouken Pamen, Olivier, 2016. "On the optimal investment," MPRA Paper 71901, University Library of Munich, Germany.

    More about this item


    Path dependence; Optimal payoff; Risk aversion; Esscher transform;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:36:y:2012:i:5:p:1304-1310. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.