IDEAS home Printed from https://ideas.repec.org/a/kap/jeczfn/v115y2015i2p175-194.html
   My bibliography  Save this article

The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases

Author

Listed:
  • Adriana Piazza

    ()

  • Bernardo Pagnoncelli

Abstract

We extend the classic Mitra and Wan forestry model by assuming that prices follow a geometric Brownian motion. We move one step further in the model with stochastic prices and include risk aversion in the objective function. We prove that, as in the deterministic case, the optimal program is periodic both in the risk neutral and risk averse frameworks, when the benefit function is linear. We find the optimal rotation ages in both stochastic cases and show that they may differ significantly from the deterministic rotation age. In addition, we show how the drift of the price process affects the optimal rotation age and how the degree of risk aversion shortens it. We illustrate our findings for an example of a biomass function and for different values of the model’s parameters. Copyright Springer-Verlag Wien 2015

Suggested Citation

  • Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
  • Handle: RePEc:kap:jeczfn:v:115:y:2015:i:2:p:175-194
    DOI: 10.1007/s00712-014-0414-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00712-014-0414-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    2. Clarke, Harry R. & Reed, William J., 1989. "The tree-cutting problem in a stochastic environment : The case of age-dependent growth," Journal of Economic Dynamics and Control, Elsevier, vol. 13(4), pages 569-595, October.
    3. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    4. Rajendra Prasad Khajuria & Shashi Kant & Susanna Laaksonen-Craig, 2009. "Valuation of Timber Harvesting Options Using a Contingent Claims Approach," Land Economics, University of Wisconsin Press, vol. 85(4), pages 655-674.
    5. Tapan Mitra & Henry Y. Wan, 1985. "Some Theoretical Results on the Economics of Forestry," Review of Economic Studies, Oxford University Press, vol. 52(2), pages 263-282.
    6. Peters, Hans, 2012. "A preference foundation for constant loss aversion," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 21-25.
    7. Salo, Seppo & Tahvonen, Olli, 2002. "On Equilibrium Cycles and Normal Forests in Optimal Harvesting of Tree Vintages," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 1-22, July.
    8. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    9. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    10. Alvarez, Luis H.R. & Koskela, Erkki, 2006. "Does risk aversion accelerate optimal forest rotation under uncertainty?," Journal of Forest Economics, Elsevier, vol. 12(3), pages 171-184, December.
    11. Luca Corato & Michele Moretto & Sergio Vergalli, 2013. "Land conversion pace under uncertainty and irreversibility: too fast or too slow?," Journal of Economics, Springer, vol. 110(1), pages 45-82, September.
    12. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    13. Mitra, Tapan & Wan, Henry Jr., 1986. "On the faustmann solution to the forest management problem," Journal of Economic Theory, Elsevier, vol. 40(2), pages 229-249, December.
    14. Thomas A. Thomson, 1992. "Optimal Forest Rotation When Stumpage Prices Follow a Diffusion Process," Land Economics, University of Wisconsin Press, vol. 68(3), pages 329-342.
    15. Zhou, Mo & Buongiorno, Joseph, 2006. "Space-Time Modeling of Timber Prices," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(1), pages 1-17, April.
    16. Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
    17. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    18. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    19. Delbaen, Freddy & Drapeau, Samuel & Kupper, Michael, 2011. "A von Neumann–Morgenstern representation result without weak continuity assumption," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 401-408.
    20. Yoshimoto, Atsushi & Shoji, Isao, 1998. "Searching for an optimal rotation age for forest stand management under stochastic log prices," European Journal of Operational Research, Elsevier, vol. 105(1), pages 100-112, February.
    21. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Taxation and rotation age under stochastic forest stand value," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 113-127, July.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Laura Schechter, 2007. "Risk aversion and expected-utility theory: A calibration exercise," Journal of Risk and Uncertainty, Springer, vol. 35(1), pages 67-76, August.
    24. Salo, Seppo & Tahvonen, Olli, 2003. "On the economics of forest vintages," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1411-1435, June.
    25. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo K. Pagnoncelli & Adriana Piazza, 2017. "The optimal harvesting problem under price uncertainty: the risk averse case," Annals of Operations Research, Springer, vol. 258(2), pages 479-502, November.

    More about this item

    Keywords

    Forestry; Dynamic programming; Risk analysis; Coherent risk measures; Q23; C61; D81;

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jeczfn:v:115:y:2015:i:2:p:175-194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.